机器学习实战 决策树

决策树的引出:
前一节学到了knn,在分析代码后总结到knn有一个缺点是无法给出数据的内在含义,比如说无法去研究特征的含义 只是单纯的知道特征大小。而决策树就可以非常容易的去理解数据。

总结:
1.复杂度不高,输出结果容易理解(对特征的描述),可以处理不相关特征
2.缺点是会产生过度匹配
3.只适用于标称型数据(比如是否这种选择性的特征,或合格 良好 优秀这种可用有限的离散数字描述的特征),如果要用数值型特征,需要离散化(比如工资100 200 300,可以以150作为分界点,100属于小于150类别,200 300属于大于150类别)

步骤:
0.原始数据整理为标称型数据
1.构造决策树:
- 选择最好的特征对数据集进行划分
- - 对每一个特征,划分数据集,计算划分后的信息增益,信息增益最大的说明这个特征对于数据集的划分最有效,则为最好的特征。直接对代码分解:

#根据信息增益选择最好的特征划分数据集,返回最好的特征序号    
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      
    #the last column is used for the labels 有num个特征
    baseEntropy = calcShannonEnt(dataSet)#计算划分前的熵
    #熵的计算在这部分代码之后详细分析
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        
    #iterate over all the features,循环每个特征,对于第i个特征
        featList = [example[i] for example in dataSet]
        #把所有样本的第i个特征取出来
        uniqueVals = set(featList)
        #得到第i个特征的unique种取值
        newEntropy = 0.0
        for value in uniqueVals:
        #对于第i个特征的每一个取值,都进行数据集划分,得到除了这个特征之外的所有特征组成的数据子集
            subDataSet = splitDataSet(dataSet, i, value)
            #输入数据集,第i个特征的序号,这个特征的取值value,输出按照这个value得到数据集,具体怎么划分之后详述
            prob = len(subDataSet)/float(len(dataSet))
            #根据这个特征值划分数据集之后,得到划分后数据集所占的比例
            newEntropy += prob * calcShannonEnt(subDataSet)
            #根据数据子集,计算条件熵    
        infoGain = baseEntropy - newEntropy
        #得到按照这个特征划分数据集,前后的信息增益
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature #返回信息增益最大的特征序号,第i个特征 
def calcShannonEnt(dataSet):#计算数据集的熵,注意是对类别计算熵
    numEntries = len(dataSet)#总样本数
    labelCounts = {}
    for featVec in dataSet: 
    #对每一个样本分析
        currentLabel = featVec[-1]#取出最后一列,即类别
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1#计算这个类别的样本的样本数
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries#计算这个类别的频率,作为概率
        shannonEnt -= prob * log(prob,2) #log base 2求熵
    return shannonEnt
def splitDataSet(dataSet, axis, value):
#根据第axis个特征,划分特征值为value的数据,得到新的数据集
    retDataSet = []
    for featVec in dataSet:#循环所有数据集样本
        if featVec[axis] == value:#如果第axis个特征的值为value
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            #那么把除这个特征值之外的特征保存为新的数据集dataset
            retDataSet.append(reducedFeatVec)
    return retDataSet
  • 通过上一个步骤,得到了这个最好特征的序号,通过去找标签中这个特征的名字,记为这个决策树第一个判断节点。(注意这个标签不是数据集的分类标签,而是特征序号对应的特征名字标签)
  • 根据这个特征的不同取值,把数据集划分成几个数据子集。再对这些数据子集,递归调用构造决策树,得到下一个决策树判断节点。
  • 停止条件是,当这个特征划分的数据子集只有一个类别,说明划分完毕,得到叶节点和其类别;当所有特征被用作划分条件划分完毕,选择数据子集中出现最多次数的类别作为这个叶节点的类别。
    代码分析如下:
#创建决策树
def createTree(dataSet,labels):#输入的标签是特征名字
    classList = [example[-1] for example in dataSet]
    #得到数据集类别的列表
    if classList.count(classList[0]) == len(classList):#如果所有数据集类别都相同,说明划分完毕,返回这个类别 
        return classList[0]
    if len(dataSet[0]) == 1: 
        #如果数据集里面已经没有可用的特征,说明特征划分完毕,返回叶节点的类别
        return majorityCnt(classList)
    #以上都不满足,则进行划分
    bestFeat = chooseBestFeatureToSplit(dataSet)
    #得到最好特征的序号
    bestFeatLabel = labels[bestFeat]#和这个特征的名字
    myTree = {bestFeatLabel:{}}#决策树里放入这个特征名字

    del(labels[bestFeat])
#把这个最好特征的值都拿出来
    uniqueVals = set(featValues)#看这个特征有几种取值类型
    for value in uniqueVals:#对每一种类型都进行数据集划分
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
        #决策树中,一个最好特征的名字,对应可以划分成不同类型value的数据子集,再对这些子集递归构造决策树
    return myTree                            

2.使用决策树进行分类
- 输出测试样本的特征列表,按照决策树的判断节点的特征,一步步判断此测试样本相应特征的值,一直到叶节点,叶节点的类别即为测试样本的类别。
代码分析:

#测试数据    
def classify(inputTree,featLabels,testVec):
    #输入已构造好的决策树,特征名字标签(特征序号对应的特征名字),测试数据,返回测试数据的类别
    firstStr = inputTree.keys()[0]#得到决策树第一个判断节点上需要判断的特征的名字
    secondDict = inputTree[firstStr]
    #得到这个节点后的决策树
    featIndex = featLabels.index(firstStr)
    #去标签中找这个判断特征名字对应的特征序号
    key = testVec[featIndex]#得到测试样本中这个特征的值
    valueOfFeat = secondDict[key]#根据这个特征值去找决策树中后面的决策树
    if isinstance(valueOfFeat, dict):
    #如果后面的决策树仍为字典形式,说明后面仍需要进行特征判断,递归此分类算法 
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    #直到后面的决策树已经到了叶节点,说明分类完毕,返回叶节点的类别
    return classLabel

tips:
- 实际运行中会把已经构造好的决策树存储起来,方便调用
- 决策树的形式:

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
  • 字典形式,首先是第一个需要判断的特征的名字,它的键值又是一个字典,当值为0时(也就是这个特征值=0)得到叶节点,也就是类型为no;当值为1(特征值=1)时又得到一个字典,也就是继续进行特征划分,这个特征的名字是flipper,当这个特征值=0时,得到类别no;当这个特征值=1时,得到类别yes。
  • 对应决策树构造的主程序里,也可以看到每次存储特征名字,再存储特征值,再存储这个特征名字当特征值为某个数的时候递归调用主程序。
  • 分类时也是如此,每次选择决策树 字典的第一个key,去找测试样本中这个key的value,用字典中key对应的value的值再递归判断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值