【AI知识点】机器学习中的常用优化算法(梯度下降、SGD、Adam等)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


1. 什么是优化算法?

在机器学习中优化算法(Optimization Algorithm) 的任务是找到模型参数(如权重、偏置等),使得损失函数(例如均方误差、交叉熵等)最小化。损失函数度量的是模型预测值与真实标签之间的误差。优化算法通过不断调整模型的参数,使损失函数达到全局或局部最小值。

在神经网络中,优化算法需要通过反向传播(Backpropagation)计算每个参数对损失函数的导数(即梯度),并根据这些梯度更新模型的参数。


2. 基于梯度的优化算法

这些算法是深度学习中最常用的优化方法,通过计算梯度来找到损失函数最小的方向。

a. 梯度下降(Gradient Descent)

梯度下降是最基本的优化算法,核心思想是:朝着使损失函数减少的方向更新参数,直到达到最小值。

  • 更新规则
    θ = θ − α ⋅ ∇ θ J ( θ ) \theta = \theta - \alpha \cdot \nabla_\theta J(\theta) θ=θαθJ(θ)
    其中:
    • θ \theta θ 是模型的参数。
    • α \alpha α 是学习率,控制每次更新的步长。
    • ∇ θ J ( θ ) \nabla_\theta J(\theta) θJ(θ) 是损失函数 J ( θ ) J(\theta) J(θ) 对参数 θ \theta θ 的梯度。

b. 随机梯度下降(Stochastic Gradient Descent, SGD)

梯度下降的一个问题是,当数据集很大时,计算所有样本的梯度会很耗时。随机梯度下降(SGD) 是对梯度下降的改进,每次迭代只使用一个数据点来计算梯度,从而大大加快了参数更新。

c. 小批量梯度下降(Mini-batch Gradient Descent)

这是梯度下降和随机梯度下降的折中版本。它通过对一小部分数据(称为mini-batch)进行梯度计算和更新,这样既加快了计算速度,又保持了一定的稳定性。

d. 动量法(Momentum)

SGD 更新参数时每次依赖于当前梯度的方向,但有时可能会在方向上震荡。动量法通过加入“动量”项,积累过去几次梯度的方向,使得优化算法能够更快速地朝着最优解的方向前进。

  • 更新规则
    v t = β v t − 1 + α ∇ θ J ( θ ) v_t = \beta v_{t-1} + \alpha \nabla_\theta J(\theta) vt=βvt1+αθJ(θ)
    θ = θ − v t \theta = \theta - v_t θ=θv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值