「论文访谈间」是由 PaperWeekly 和中国中文信息学会社会媒体处理专委会(SMP)联合发起的论文报道栏目,旨在让国内优质论文得到更多关注和认可。
信息传播预测,也称为级联预测,主要研究信息如何在用户之间进行传播,已经在很多实际场景中得到了应用,例如产品推广,流行病学以及新闻和观点的传播。
近期传播预测的工作利用深度学习技术的优势,将信息传播过程建模为基于循环神经网络(RNN)的序列模型,并取得了很好的成果。
但是现有工作要么专注于预测下一个受影响的用户的微观尺度传播预测,要么致力于估算传播过程中受影响用户的总数的宏观尺度传播预测,没能将微观和宏观尺度的预测模型统一起来。
▲ 图1. 宏观尺度的传播预测(左)和微观尺度的传播预测(右)
针对已有研究的局限性,杨成等人提出了一种基于强化学习(RL)的多尺度信息传播预测模型同时进行微观尺度与宏观尺度的预测。具体地,论文通过使用强化学习框架将宏观尺度的监督信号引入微观级联模型,并采用了快速有效的结构上下文提取方法来利用社交网络结构信息。
他们的研究成果 Multi-scale Information Diffusion Prediction with Reinforced Recurrent Networks 发表在 2019 年的 IJCAI 会议上。为了方便大家了解该领域的工作,作者也整理了一份近年来信息传播预测任务的相关论文列表:
https://github.com/albertyang33/DiffusionPapers
论文标题:Multi-scale Information Diffusion Prediction with Reinforced Recurrent Networks
论文来源:IJCAI 2019
论文链接:https://www.ijcai.org/Proceedings/2019/560
代码链接:https://github.com/albertyang33/FOREST
问题介绍
论文中使用的数据集有 Twitter、Douban 以及 Memetracker。以 Twitter 数据集为例,Twitter 数据集记录了 2010 年 10 月包含有 URL 的推特,其中每个 URL 都是在用户之间传播的信息项。
论文按照时间顺序对转发某个 URL 的用户进行排序,作为该 URL 的级联。数据集除包含有这些级联外还包含有这些用户的社交网络图信息。论文数据集的统计信息如下表所示:
▲ 表1. 数据集统计
下面给出微观与宏观尺度预测的形式化定义:
给定用户集合 V 和级联集合 C,每个级联 是按受影响时间排序的用户序列 ,其中 是级联