鱼和熊掌如何兼得?基于强化学习的多尺度信息传播预测

本文介绍了一种基于强化学习的多尺度信息传播预测模型,该模型结合了微观和宏观尺度的预测,发表在2019年的IJCAI会议上。通过将宏观尺度的监督信号引入微观级联模型,同时利用社交网络结构信息,模型在微观传播预测和宏观传播预测任务上均表现出优越性能。
摘要由CSDN通过智能技术生成

「论文访谈间」是由 PaperWeekly 和中国中文信息学会社会媒体处理专委会(SMP)联合发起的论文报道栏目,旨在让国内优质论文得到更多关注和认可。

信息传播预测,也称为级联预测,主要研究信息如何在用户之间进行传播,已经在很多实际场景中得到了应用,例如产品推广,流行病学以及新闻和观点的传播。

近期传播预测的工作利用深度学习技术的优势,将信息传播过程建模为基于循环神经网络(RNN)的序列模型,并取得了很好的成果。

但是现有工作要么专注于预测下一个受影响的用户的微观尺度传播预测,要么致力于估算传播过程中受影响用户的总数的宏观尺度传播预测,没能将微观和宏观尺度的预测模型统一起来。

▲ 图1. 宏观尺度的传播预测(左)和微观尺度的传播预测(右)

针对已有研究的局限性,杨成等人提出了一种基于强化学习(RL)的多尺度信息传播预测模型同时进行微观尺度与宏观尺度的预测。具体地,论文通过使用强化学习框架将宏观尺度的监督信号引入微观级联模型,并采用了快速有效的结构上下文提取方法来利用社交网络结构信息。

他们的研究成果 Multi-scale Information Diffusion Prediction with Reinforced Recurrent Networks 发表在 2019 年的 IJCAI 会议上。为了方便大家了解该领域的工作,作者也整理了一份近年来信息传播预测任务的相关论文列表:

https://github.com/albertyang33/DiffusionPapers

论文标题:Multi-scale Information Diffusion Prediction with Reinforced Recurrent Networks

论文来源:IJCAI 2019

论文链接:https://www.ijcai.org/Proceedings/2019/560

代码链接:https://github.com/albertyang33/FOREST

问题介绍

论文中使用的数据集有 Twitter、Douban 以及 Memetracker。以 Twitter 数据集为例,Twitter 数据集记录了 2010 年 10 月包含有 URL 的推特,其中每个 URL  都是在用户之间传播的信息项。

论文按照时间顺序对转发某个 URL 的用户进行排序,作为该 URL 的级联。数据集除包含有这些级联外还包含有这些用户的社交网络图信息。论文数据集的统计信息如下表所示:

▲ 表1. 数据集统计

下面给出微观与宏观尺度预测的形式化定义:

给定用户集合 V 和级联集合 C,每个级联  是按受影响时间排序的用户序列  ,其中  是级联 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值