多尺度不仅对检测和分割不同尺度的目标很重要,对于提高模型的参数使用效率也非常关键!因而其在各大顶会都是红人!仔细研读了上百篇文章之后,发现这5个方向,最好中稿!
多尺度卷积:它能通过不同大小的卷积核,来捕图像中不同尺度特征,在提高模型特征表达能力和计算效率方面效果卓越!我们可以从输入、卷积、池化、输出等入手,可发挥空间很大!
多尺度Transformer:其克服了传统Transformer的高计算成本、局部信息获取不足等缺陷,对提高模型精度大有裨益!
小样本多尺度学习:结合了小样本学习和多尺度学习的优点,能够在有限的训练数据下实现高精度模型性能。
轻量高效多尺度网络:是处理复杂任务,特别是资源受限环境中应用深度学习技术的理想选择。
脑启发的多尺度学习:当下新兴的潜力方向。它结合了脑科学和人工智能的优势,使模型能更准确地捕捉输入数据的本质特征。
为方便大家研究的进行,每个方向,我都给大家准备了必读论文和源码,共30篇,一起来看!
论文原文+开源代码需要的同学看文末
多尺度卷积
NeXt-TDNN: Modernizing Multi-Scale Temporal Convolution Backbone for Speaker Verification
内容:文章提出了一种改进的时间延迟神经网络架构,称为NeXt-TDNN,用于说话人验证任务。该架构通过引入一种新的1D两步多尺度ConvNeXt块来替代ECAPA-TDNN中的SE-Res2Net块。TS-ConvNeXt块由时间多尺度卷积模块和帧级前馈网络模块组成,能够灵活地捕捉帧间和帧内上下文信息。此外,文章还引入了全局响应归一化来增强特征选择性。实验结果表明,NeXt-TDNN在说话人验证任务中显著提高了性能,同时减少了参数数量和推理时间。
多尺度视觉Transformer
Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining
内容:文章提出了一种名为NeRD-Rain的双向多尺度隐式神经表示方法,用于图像去雨。该方法通过结合隐式神经表示(INR)和多尺度Transformer结构,有效地利用不同尺度下的雨滴特征来提高图像去雨的质量。具体来说,文章引入了基于像素坐标的隐式神经表示来学习不同尺度下的雨滴退化特征,并通过双向反馈机制在粗到细和细到粗之间进行信息传递,增强了模型在复杂场景下的鲁棒性。实验结果表明,该方法在合成和真实世界的基准数据集上均优于现有的最先进方法。
小样本多尺度学习
Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
内容:文章提出了一种用于少样本图像分类的新方法,通过可学习的多尺度嵌入和注意力机制来提高分类性能。该方法利用多输出嵌入网络将样本映射到不同的特征空间,以捕捉全局和抽象特征,并通过自注意力机制在每个阶段细化特征表示,从而获得更鲁棒的特征表示。
轻量高效的多尺度网络
GLIMS: Attention-Guided Lightweight Multi-Scale Hybrid Network for Volumetric Semantic Segmentation
内容:文章介绍了一种名为GLIMS的轻量级混合网络,用于三维医学图像的语义分割。GLIMS结合了卷积神经网络(CNN)和基于Swin Transformer的瓶颈结构,通过注意力引导和多尺度特征聚合来有效捕捉局部和全局特征。该模型在BraTS2021和BTCV数据集上的实验结果表明,GLIMS在保持较低模型复杂度的同时,实现了高精度的分割性能,特别是在处理多器官CT分割和脑胶质瘤MRI分割任务时,表现优于现有的最先进方法.
脑启发的多尺度学习
EPITOPOLOGICAL LEARNING AND CANNISTRACI HEBB NETWORK SHAPE INTELLIGENCE BRAIN INSPIRED THEORY FOR ULTRA-SPARSE ADVANTAGE IN DEEP LEARNING
内容:文章提出了一种名为Cannistraci-Hebb训练(CHT)的新型深度学习方法,旨在通过超稀疏(约1%连接保留)的网络拓扑结构来提高学习效率。该方法结合了拓扑学习理论和脑启发的学习范式,通过Epitopological Sparse Meta-deep Learning(ESML)来动态调整网络结构,利用CH3-L3网络自组织规则进行链接预测,从而在训练过程中自动稀疏化神经元。
码字不易,欢迎大家点赞评论收藏!
关注下方《AI科研技术派》
回复【MSDL】获取完整论文
👇