©PaperWeekly 原创 · 作者|石壮威
学校|南开大学硕士
研究方向|机器学习、图神经网络
论文标题:
GMNN: Graph Markov Neural Networks
收录会议:
ICML 2019
论文地址:
https://arxiv.org/abs/1905.06214
代码地址:
https://github.com/DeepGraphLearning/GMNN
本文 [1] 研究了图上的半监督节点分类问题。在此前的文献中,基于统计关系学习(例如马尔科夫随机场)和图神经网络(例如图卷积网络)的方法都已被广泛应用于这类问题。统计关系学习方法通过对象标签的依赖关系建模条件随机场,而图神经网络则以端到端训练的形式,提升了图学习的效率。
在本文中,作者提出图马尔可夫神经网络(Graph Markov Neural Networks ,GMNN)。GMNN 以条件随机场建模对象标签的联合分布,用变分 EM 算法进行有效训练。在 E-step 中,一个 GNN 学习用于拟合标签后验分布的表示向量。在 M-step 中,另一个 GNN 用于建模标签依赖关系。实验结果表明,GMNN 取得了优越的结果。
相关工作
考虑半监督学习中的一个图 ,其中 V 是节点的集合,E 是节点之间边的集合, 是所有节点特征的集合。已知一部分标签 ,L∈V,我们的任务是预测剩下未知的标签 ,U = V \ L。
统计关系学习(statistical relationship learning,SRL)方法以如下方式计算标签的联合概率分布:
ψ 是边上的势函数,一般是人工定义的特征函数的线性组合。
这种情况下,预测未知标签任务被看做是推断问题,我们还要去计算位置标签的后验分布