图马尔可夫网络:融合统计关系学习与图神经网络

本文介绍了GMNN(Graph Markov Neural Networks),它结合了统计关系学习(如马尔科夫随机场)和图神经网络(如图卷积网络)的优势,用于解决图上的半监督节点分类问题。GMNN利用条件随机场建模标签的联合分布,并通过变分EM算法训练,其中E-step和M-step分别由两个GNN负责。实验表明,GMNN在多个任务上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©PaperWeekly 原创 · 作者|石壮威

学校|南开大学硕士

研究方向|机器学习、图神经网络

论文标题:

GMNN: Graph Markov Neural Networks

收录会议:

ICML 2019

论文地址:

https://arxiv.org/abs/1905.06214

代码地址:

https://github.com/DeepGraphLearning/GMNN

 

本文 [1] 研究了图上的半监督节点分类问题。在此前的文献中,基于统计关系学习(例如马尔科夫随机场)和图神经网络(例如图卷积网络)的方法都已被广泛应用于这类问题。统计关系学习方法通过对象标签的依赖关系建模条件随机场,而图神经网络则以端到端训练的形式,提升了图学习的效率。

在本文中,作者提出图马尔可夫神经网络(Graph Markov Neural Networks ,GMNN)。GMNN 以条件随机场建模对象标签的联合分布,用变分 EM 算法进行有效训练。在 E-step 中,一个 GNN 学习用于拟合标签后验分布的表示向量。在  M-step 中,另一个 GNN 用于建模标签依赖关系。实验结果表明,GMNN 取得了优越的结果。

相关工作

考虑半监督学习中的一个图 ,其中 V 是节点的集合,E 是节点之间边的集合, 是所有节点特征的集合。已知一部分标签 ,L∈V,我们的任务是预测剩下未知的标签 ,U = V \ L。

统计关系学习(statistical relationship learning,SRL)方法以如下方式计算标签的联合概率分布:

ψ 是边上的势函数,一般是人工定义的特征函数的线性组合。

这种情况下,预测未知标签任务被看做是推断问题,我们还要去计算位置标签的后验分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值