​让人惊叹的Johnson-Lindenstrauss引理:应用篇

本文探讨Johnson-Lindenstrauss引理(JL引理)在机器学习领域的应用,包括作为降维方法、局部敏感哈希(LSH)的基础以及在随机SVD中的作用。JL引理提供简单的随机投影降维思路,但其精度通常不及PCA、t-SNE等专门方法。在LSH中,随机投影有助于保持向量度量不变,而在随机SVD中,小规模的矩阵分解可以近似大矩阵的SVD,降低成本。此外,JL引理对词向量维度和Attention机制的头大小选择提供了理论依据。
摘要由CSDN通过智能技术生成

dbf0bf21ad7bb9c4c4bc954db20216e6.gif

©PaperWeekly 原创 · 作者 | 苏剑林

单位 | 追一科技

研究方向 | NLP、神经网络

上一篇文章中,我们比较详细地介绍了 Johnson-Lindenstrauss 引理(JL 引理)的理论推导,这一篇我们来关注它的应用。

作为一个内容上本身就跟降维相关的结论,JL 引理最基本的自然就是作为一个降维方法来用。但除了这个直接应用外,很多看似不相关的算法,比如局部敏感哈希(LSH)、随机 SVD 等,本质上也依赖于 JL 引理。此外,对于机器学习模型来说,JL 引理通常还能为我们的维度选择提供一些理论解释。

c6b5341917b1d3a5d05eae7c83dc0850.png

降维的工具

JL 引理提供了一个非常简单直接的“随机投影”降维思路:

给定 个向量 ,如果想要将它降到 维,那么只需要从 中采样一个 矩阵 ,然后 就是降维后的结果。

这个思路简单快速是毋庸置疑的,读者随之而来的疑问就是:它跟 PCA、t-SNE 等降维方法相比效果如何?

其实,正如“存在就是合理的”,更复杂的 PCA、t-SNE 等方法既然还没有被淘汰,那就说明它肯定有比随机投影更好的地方。事实上,JL 引理的随机投影只是提供了一种非常基本的降维方法,显示出哪怕在这么简单的方法之后,降维后的维度也只需要 ,它更多的是一个理论证明。

所以,真要追求降维精度的话,多数情况下 PCA、t-SNE 等这些专门的降维方法,效果肯定是要比随机投影要好的。而且上一篇文章中我们也提过,JL 引理是一个非常充分的条件,它得到的 甚至 都只是非常充分的界,比如取 的话,就有 了,基本没有实用价值。而换用 PCA、t-SNE 等更精准的降维方法,可以放宽这个要求,即在更小的维度下达到更好的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值