WGAN新方案:通过梯度归一化来实现L约束

2455c2e7b8b26a4711ea652febac553f.gif

©PaperWeekly 原创 · 作者 | 苏剑林

单位 | 追一科技

研究方向 | NLP、神经网络

当前,WGAN 主流的实现方式包括参数裁剪(Weight Clipping)、谱归一化(Spectral Normalization)、梯度惩罚(Gradient Penalty),本来则来介绍一种新的实现方案:梯度归一化(Gradient Normalization),该方案出自两篇有意思的论文,分别是《Gradient Normalization for Generative Adversarial Networks》[1] 和《GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks》[2]。

有意思在什么地方呢?从标题可以看到,这两篇论文应该是高度重合的,甚至应该是同一作者的。但事实上,这是两篇不同团队的、大致是同一时期的论文,一篇中了 ICCV,一篇中了 WACV,它们基于同样的假设推出了几乎一样的解决方案,内容重合度之高让我一直以为是同一篇论文。果然是巧合无处不在啊~

e73438ec81d95692f35158f2c142c0c4.png

基础回顾

关于 WGAN,我们已经介绍过多次,比如《互怼的艺术:从零直达WGAN-GP》《从Wasserstein距离、对偶理论到WGAN》,这里就不详细重复了。简单来说,WGAN 的迭代形式为:

1568a7d451785510a9c4a850c71ac1bc.png

这里的关键是判别器 是一个带约束优化问题,需要在优化过程中满足 L 约束 ,所以 WGAN 的实现难度就是如何往 里边引入该约束。

这里再普及一下,如果存在某个常数 ,使得定义域中的任意 都满足 ,那么我们称 满足 Lipschitz 约束(L 约束),其中 的

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: WGAN(Wasserstein生成对抗网络)是基于生成对抗网络(GAN)的一种改进算法。它旨在解决传统GAN训练中的一些困难,如模式崩溃和梯度消失等问题。 WGAN的核心思想是使用Wasserstein距离(Earth-Mover距离)来度量生成器和判别器之间的差异。传统GAN使用的JS散度或KL散度衡量了生成样本分布与真实样本分布之间的差异,但这些度量在训练过程中往往会出现不稳定的情况。Wasserstein距离则可以更稳定地度量生成样本和真实样本之间的差异。 在PyTorch中实现WGAN,首先需要定义生成器和判别器的网络结构。生成器接收一个随机向量作为输入,并将其映射到生成样本空间。判别器则接收生成样本或真实样本,并输出一个标量,表示样本的真实性。 其次,需要定义损失函数。WGAN使用的是Wasserstein距离,因此可以将其作为损失函数来衡量生成样本和真实样本之间的差异。为了实现Wasserstein距离,需要定义一个判别器的Lipschitz连续性。可以通过剪裁判别器的权重来实现这一目标。 在训练过程中,首先更判别器。通过对齐真实样本和生成样本之间的分布,来最小化差异。然后更生成器,通过最大化判别器的输出来改善生成样本的质量。反复迭代这两个步骤,直到生成样本的质量达到预期。 综上所述,WGAN在PyTorch中的实现主要包括定义生成器和判别器的网络结构,定义Wasserstein距离作为损失函数,并使用剪裁技术来确保判别器的Lipschitz连续性。通过不断迭代训练生成器和判别器,可以得到高质量的生成样本。 ### 回答2: WGAN(Wasserstein生成对抗网络)是一种生成对抗网络的改进版本,它通过引入Wasserstein距离来解决原始GAN中训练不稳定和生成样本质量评估困难的问题。PyTorch是一种常用的深度学习框架,提供丰富的工具和函数来实现WGAN。 WGAN的核心思想是将生成器和判别器之间的距离解释为样本之间的差异度量,通过最小化生成器和判别器之间的Wasserstein距离来实现训练稳定性和生成质量的提高。 在PyTorch中实现WGAN的过程一般包括以下几个步骤: 1. 定义生成器和判别器的网络结构:使用PyTorch的nn.Module类创建生成器和判别器的网络结构,可以使用卷积层、全连接层等组件来构建网络。 2. 定义损失函数:计算生成器和判别器之间的Wasserstein距离作为损失函数。可以使用PyTorch的nn.Module类中提供的损失函数计算生成器和判别器的损失。 3. 定义优化器:选择合适的优化器,例如Adam或RMSprop,并为生成器和判别器分别创建优化器对象。 4. 训练模型:使用训练数据集进行迭代的训练过程。每次迭代中,首先通过生成器生成一些样本,然后将生成的样本与真实样本一起输入给判别器进行判断,并计算生成器和判别器的损失。接下来,分别根据生成器和判别器的损失更它们的参数。 5. 评估生成效果:在训练过程中,可以定期保存生成器的参数,并使用这些参数生成一些样本来评估生成效果。 总之,使用PyTorch可以方便地实现WGAN。通过定义网络结构、损失函数和优化器,迭代地训练模型并评估生成效果可以实现高质量的图像生成任务。 ### 回答3: WGAN(Wasserstein GAN)是一种生成对抗网络,它通过引入Wasserstein距离(Earth-Mover距离)来解决传统GAN梯度不稳定和模式崩溃问题。下面将介绍WGAN在PyTorch中的实现。 首先,我们需要导入PyTorch和其他必要的库。然后定义生成器和判别器模型。生成器负责从随机噪声中生成假样本,判别器负责区分真实样本和假样本。 接着,我们定义损失函数和优化器。WGAN采用Wasserstein距离作为损失函数,并通过对判别器参数控制函数空间的Lipschitz连续性来进行训练。我们可以使用PyTorch自带的优化器来更生成器和判别器的参数。 接下来,我们进入主要的训练过程。训练过程中,我们迭代若干次,每次迭代中进行以下步骤: 1. 从真实样本中随机抽样一批样本。 2. 从随机噪声中生成一批假样本。 3. 将真实样本和假样本传入判别器,获取真实样本和假样本的判别结果。 4. 计算Wasserstein距离作为损失函数。 5. 清空优化器的梯度。 6. 根据反向传播算法更判别器的参数。 7. 对判别器的参数进行修剪,以满足Lipschitz连续性约束。 8. 如果达到一定迭代次数,再更生成器的参数。 9. 输出损失函数的值和训练进度。 最后,我们输出训练完成后生成器生成的假样本,并与真实样本进行对比。 这就是WGAN在PyTorch中的实现过程,它通过引入Wasserstein距离解决了传统GAN中的一些问题,提高了生成器和判别器的稳定性和训练效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值