©作者 | nghuyong
单位 | 腾讯
在大模型的研发中,通常会有下面一些需求:
计划训练一个 10B 的模型,想知道至少需要多大的数据?
收集到了 1T 的数据,想知道能训练一个多大的模型?
老板准备 1 个月后开发布会,给的资源是 100 张 A100,应该用多少数据训多大的模型效果最好?
老板对现在 10B 的模型不满意,想知道扩大到 100B 模型的效果能提升到多少?
以上这些问题都可以基于 Scaling Law 的理论进行回答。本文是阅读了一系列 Scaling Law 的文章后的整理和思考,包括 Scaling Law 的概念和推导以及反 Scaling Law 的场景,不当之处,欢迎指正。
核心结论
大模型的 Scaling Law 是 OpenAI 在 2020 年提出的概念 [1],具体如下:
1. 对于 Decoder-only 的模型,计算量 (Flops),模型参数量 ,数据大小 (token 数),三者满足:。(推导见本文最后)
2. 模型的最终性能主要与计算量 ,模型参数量 和数据大小 三者相关,而与模型的具体结构(层数/深度/宽度)基本无关。
3. 对于计算量 ,模型参数量 和数据大小 ,当不受其他两个因素制约时,模型性能与每个因素都呈现幂律关系。
4. 为了提升模型性能,模型参数量 和数据大小 需要同步放大,但模型和数据分别放大的比例还存在争议。
5. Scaling Law不仅适用于语言模型,还适用于其他模态以及跨模态的任务 [4]:
这里横轴单位为 PF-days: 如果每秒钟可进行 次运算,就是 1 peta flops,那么一天的运算就是 ,这个算力消耗被称为 1 个 petaflop/s-day。
核心公式
第一项 是指无法通过增加模型规模来减少的损失,可以认为是数据自身的熵(例如数据中的噪音)
第二项 是指能通过增加计算量来减少的损失,可以认为是模型拟合的分布与实际分布之间的差。
根据公式,增大 (例如计算量 ),模型整体 loss 下降,模型性能提升;伴随 趋向于无穷大,模型能拟合数据的真实分布,让第二项逼近 0,整体趋向于 。
大模型中的Scaling Law
3.1 GPT4
下图是 GPT4 报告 [5] 中的 Scaling Law 曲线,计算量 和模型性能满足幂律关系
横轴是归一化之后的计算量,假设 GPT4 的计算量为 1。基于 10,000 倍小的计算规模,就能预测最终 GPT4 的性能。
纵轴是 “Bits for words”, 这也是交叉熵的一个单位。在计算交叉熵时,如果使用以 2 为底的对数,交叉熵的单位就是 “bits per word”,与信息论中的比特(bit)概念相符。所以这个值越低,说明模型的性能越好。
3.2 Baichuan2
下图是 Baichuan2 [6] 技术报告中的 Scaling Law 曲线。基于 10M 到 3B 的模型在 1T 数据上训练的性能,可预测出最后 7B 模型和 13B 模型在 2.6T 数据上的性能。
3.3 MindLLM
下图是 MindLLM [7]技术报告中的 Scaling Law 曲线。基于 10M 到 500M 的模型在 10B 数据上训练的性能,预测出最后 3B 模型在 500B 数据上的性能。
Scaling Law实操:计算效率最优
根据幂律定律,模型的参数固定,无限堆数据并不能无限提升模型的性能,模型最终性能会慢慢趋向一个固定的值
如图所示,如果模型的参数量为 (图中紫色的线),在数量达到 ,模型基本收敛。所以在数据量达到 后,继续增加数据产生的计算量,没有同样计算量下提升模型参数量带来的收益大(计算效率更优)。根据 ,可以进一步转换成模型参数与计算量的关系,即: 模型参数为 ,在计算量为 Flops,即 PF-days 时基本收敛。也就是右图中紫色线的拐点。
根据 Baichuan [6] 的实验,在中英场景下,7B 模型收敛时的算力是 FLOPS,对应的数据量应该是 。
按照上面的思路,下面进行 Scaling Law 的实操。
首先准备充足的数据(例如 1T),设计不同模型参数量的小模型(例如 0.001B-1B),独立训练每个模型,每个模型都训练到基本收敛(假设数据量充足)。根据训练中不同模型的参数和数据量的组合,收集计算量与模型性能的关系。然后可以进一步获得计算效率最优时,即同样计算量下性能最好的模型规模和数据大小的组合,模型大小与计算量的关系,以及数据大小与计算量的关系。
如图所示,根据左图可以看到计算量与模型性能呈现幂律关系(可以认为数据和模型都不受限制),根据中图和右图,可以发现 ,即计算效率最优时,模型的参数与计算量的幂次成线性关系,数据量的大小也与计算量的幂次成线性关系。
根据 ,可以推算出 ,但是 分别是多少存在分歧。
OpenAI [1] 认为模型规模更重要,即 ,而 DeepMind 在 Chinchilla 工作 [2] 和 Google 在 PaLM 工作 [3] 中都验证了 ,即模型和数据同等重要。
所以假定计算量整体放大 10 倍,OpenAI 认为模型参数更重要,模型应放大 (5.32)倍,数据放大 (1.86)倍;后来 DeepMind 和 Google 认为模型参数量与数据同等重要,两者都应该分别放大 (3.16)倍。
例如在 PaLM 的实验中,计算量从 放大 10 倍到 , 模型参数也提升了 3.2 倍,3.35B->10.7B。
例如在 PaLM 的实验具体最好在自己的数据上做实验来获得你场景下的 和 。
LLaMA: 反Scaling Law的大模型
假设遵循计算效率最优来研发 LLM,那么根据 Scaling Law,给定模型大小,可以推算出最优的计算量,进一步根据最优计算量就能推算出需要的 token 数量,然后训练就行。
但是计算效率最优这个观点是针对训练阶段而言的,并不是推理阶段,实际应用中推理阶段效率更实用。
Meta 在 LLaMA [8] 的观点是:给定模型的目标性能,并不需要用最优的计算效率在最快时间训练好模型,而应该在更大规模的数据上,训练一个相对更小模型,这样的模型在推理阶段的成本更低,尽管训练阶段的效率不是最优的(同样的算力其实能获得更优的模型,但是模型尺寸也会更大)。根据 Scaling Law,10B 模型只需要 200B 的数据,但是作者发现 7B 的模型性能在 1T 的数据后还能继续提升。
所以 LLaMA 工作的重点是训练一系列语言模型,通过使用更多的数据,让模型在有限推理资源下有最佳的性能。
具体而言,确定模型尺寸后,Scaling Law 给到的只是最优的数据量,或者说是一个至少的数据量,实际在训练中观察在各个指标上的性能表现,只要还在继续增长,就可以持续增加训练数据。
计算量、模型和数据大小的关系推导
对于 Decoder-only 的模型,计算量 (Flops),模型参数量 (除去 Embedding 部分),数据大小 (token 数),三者的关系为:
推导如下,记模型的结构为:
decoder 层数:
attention 隐层维度:
attention feedforward 层维度:, 一般来说
首先推导模型的参数量 (忽略 embedding,norm 和 bias)计算如下:
transformer 每层包括:self-attetion 和 MLP 两个部分:
self-attention 的参数为 ,每个矩阵的维度均为 ,整体参数量:
MLP的层数的参数为 ,整体参数量:
所以每层的参数量为:,全部的 层的参数量为:,即
继续推导模型的前向推理的计算量:
计算量的单位是FLOPs,floating point operations 对于矩阵 , 相乘的计算量为 ,一次加法一次乘法。
假设 Decoder 层的输入 , 为 batch size, 为序列长度, 为模型维度。
self-attention 部分的计算:
输入线性层:,计算量为:
atention 计算:,计算量为:
socre 与 V 的计算:,计算量为:
输出线性层:,计算量为:
MLP 部分的计算
升维:,计算量为:
降维:,计算量为:
所以整个 decoder 层的计算量为:,全部 层为:
反向传播计算量是正向的 2 倍,所以全部的计算量为:
平均每个 token 的计算量为
所以对于全部包含 个 token 的数据集:
参考文献
[1] Scaling Laws for Neural Language Models:https://arxiv.org/abs/2001.08361
[2] Training Compute-Optimal Large Language Models:https://arxiv.org/abs/2203.15556
[3] PaLM 2 Technical Report:https://arxiv.org/abs/2305.10403
[4] Scaling Laws for Autoregressive Generative Modeling:https://arxiv.org/abs/2010.14701
[5] GPT-4 Technical Report:https://arxiv.org/abs/2303.08774
[6] Baichuan 2: Open Large-scale Language Models:https://arxiv.org/abs/2309.10305
[7] MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications:https://arxiv.org/abs/2310.15777
[8] LLaMA: Open and Efficient Foundation Language Models:https://arxiv.org/abs/2302.13971
[9] 人工智能中的算力单位Petaflop/s-day - 套牌神仙的文章:https://zhuanlan.zhihu.com/p/106406433
[10] 李开复带队零一万物发布开源大模型 Yi,如何解读?- 黄文灏的回答:https://www.zhihu.com/question/629230332/answer/3278779348
[11] 介绍一些Scaling Laws - cingti的文章:https://zhuanlan.zhihu.com/p/631357320
[12] 分析transformer模型的参数量、计算量、中间激活、KV cache - 回旋托马斯x的文章:https://zhuanlan.zhihu.com/p/624740065
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
·
·