在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。
在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。
点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。
这是 PaperDaily 的第 92 篇文章本期推荐的论文笔记来自 PaperWeekly 社区用户 @Cratial。本文是东京大学发表于 CVPR 2018 的工作,论文提出了基于域适应的弱监督学习策略,在源域拥有充足的实例级标注的数据,但目标域仅有少量图像级标注的数据的情况下,尽可能准确地实现对目标域数据的物体检测。
如果你对本文工作感兴趣,点击底部阅读原文即可查看原论文。
关于作者:吴仕超,东北大学硕士生,研究方向为脑机接口、驾驶疲劳检测和机器学习。
■ 论文 | Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation
■ 链接 | https://www.paperweekly.site/papers/2106
■ 源码 | https://github.com/naoto0804/cross-domain-detection
引出主题
虽然深度学习技术在物体检测方面取得了巨大的成功,但目前的物体检测技术主要面向的对象是真实场景下的图像,而对于像水彩画这种非真实场景下的物体检测任务来说,一般很难获取大量带有标注的数据集,因此物体检测问题就变得比较棘手。
为解决这一问题,本文提出了基于域适应的弱监督学习策略,其可以描述为:(1)选取一个带有实例级标注的源域数据;(2)仅有图像级标注的目标域数据;(3)目标域数据的类别是源域数据类别的全集或子集。