CVPR 2019 | 实体零售场景下密集商品的精确探测

本文针对实体零售场景中密集商品的精确检测,提出Soft-IoU层预测IoU及基于EM算法的高斯混合聚类方法,改善现有检测网络在密集目标检测中的效果。通过新增数据集SKU-110K验证方法,实现在商品密集区域的高效检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640


作者丨孙明珊

学校丨哈尔滨工业大学(深圳)

研究方向丨目标检测


640?wx_fmt=png


640?wx_fmt=png


研究动机


在购物超市中,商品陈列区中摆放了密集而繁多的商品,它们大多是相同或极其相似的,并且位置十分靠近。当前主流的检测网络在这种场景下充满挑战,效果并不是很理想。


本文的精确物体检测就是在这种场景基于主流检测方法,提出了以下几个方面的改进:


  • 提出 Soft-IoU 层进行 IoU 的预测;

  • 引入一个基于 EM 算法的高斯混合聚类方法来解决探测重叠的问题;

  • 制作了公开数据集 SKU-110K,并在相关的零售场景数据集中进行训练和测试,包括 SKU-110K, CARPK 和 PUCPR+。


其与 RetinaNet 的探测效果对比图如下所示:


640?wx_fmt=png


其中红框表示 RetinaNet 效果,蓝色表示本文的方法,(c) 和 (d) 是 (a) 和 (b) 的放大图。


可见在这种场景下探测的主要难点在于怎么确认矩形框的结束和下一个并列矩形框的开始。可见 RetinaNet 中大多数矩形框是重叠的,而本文的方法个个分明,在精确密集检测中很有优势。


研究方法


Soft-IoU层预测IoU


在非密集场景中,NMS 可以解决矩形框的重叠。然而,在密集检测中,多个重叠的边界框通常会映像多个紧密排列的目标,其中许多目标获得了高分数。在这种情况下,NMS 不能区分重叠物体之间的缝隙,或者抑制物体的不完整检测。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值