CVPR 2024 | 用于事件相机目标检测的场景自适应稀疏Transformer

论文信息

题目:Scene Adaptive Sparse Transformer for Event-based Object Detection
用于事件相机目标检测的场景自适应稀疏Transformer
作者:Yansong Peng, Hebei Li, Yueyi Zhang, Xiaoyan Sun, Feng Wu
源码:https://github.com/Peterande/SAST

论文创新点

  1. 窗口-token协同稀疏化:SAST通过在基于窗口的Transformer架构中实现窗口-token协同稀疏化,显著减少了计算开销,同时增强了模型的容错能力。
  2. 场景自适应稀疏优化:SAST引入了创新的评分和选择模块,能够根据场景的复杂性动态调整稀疏级别。这种场景自适应能力使模型能够根据不同场景的需求优化稀疏策略,从而在保持低计算成本的同时实现高性能。
  3. 掩码稀疏窗口自注意力机制(MS-WSA):SAST设
### 自适应稀疏自注意力 (ASSA) 模块概述 自适应稀疏自注意力 (Adaptive Sparse Self-Attention, ASSA) 模块是一种创新性的注意力机制,旨在优化传统自注意力模型中存在的信息冗余和计算复杂度问题。该模块采用了双分支结构,包括稀疏自注意力分支 (Sparse Self-Attention Branch, SSA) 和密集自注意力分支 (Dense Self-Attention Branch, DSA)[^1]。 #### 双分支架构的作用 - **SSA 支路**:负责筛选并排除那些具有较低查询-键匹配分数的元素,从而减少无关特征的影响,提升模型对重要信息的关注能力。 - **DSA 支路**:确保整个网络中有足够的信息流动,以便能够有效地捕捉到全局上下文关系,并支持更深层次的学习过程[^2]。 这种设计不仅提高了模型的表现力,还显著降低了计算成本,在多个任务上展现了优越性能,特别是在图像修复等领域取得了良好的实验效果[^3]。 ### 实现细节 为了更好地理解如何实现 ASSA 模型,下面提供了一个基于 PyTorch 的简单示例代码片段: ```python import torch from torch import nn class SSABranch(nn.Module): def __init__(self, d_model, n_heads=8): super(SSABranch, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, n_heads) def forward(self, q, k, v, mask=None): attn_output, _ = self.self_attn(q, k, v, key_padding_mask=mask) return attn_output class DSABranch(nn.Module): def __init__(self, d_model, n_heads=8): super(DSABranch, self).__init__() self.dense_self_attn = nn.MultiheadAttention(d_model, n_heads) def forward(self, q, k, v): dense_output, _ = self.dense_self_attn(q, k, v) return dense_output class ASSAModule(nn.Module): def __init__(self, d_model, n_heads=8): super(ASSAModule, self).__init__() self.ssa_branch = SSABranch(d_model=d_model, n_heads=n_heads) self.dsa_branch = DSABranch(d_model=d_model, n_heads=n_heads) def forward(self, query, key, value, ssa_mask=None): ssa_out = self.ssa_branch(query=query, key=key, value=value, mask=ssa_mask) dsa_out = self.dsa_branch(query=query, key=key, value=value) output = torch.cat([ssa_out, dsa_out], dim=-1) return output ``` 此代码定义了 `SSABranch` 和 `DSABranch` 类分别对应于上述提到的两个支路,并通过组合它们构建出了完整的 ASSA 模块 (`ASSAModule`)。注意这里仅展示了基本框架;实际应用时可能还需要加入更多组件如残差连接、层归一化等以完善整体架构。 ### 相关研究论文与资源链接 对于希望深入了解 ASSA 技术背后原理的研究人员而言,建议查阅以下几篇文献: - "Adapt or Perish: Adaptive Sparse Transformer with Attentive Feature Refinement for Image Restoration" 此外,GitHub 上也有一些开源项目实现了类似的算法变体,可供参考学习: - [CVPR 2024 Papers with Code](https://github.com/amusi/CVPR2024-Papers-with-Code?tab=readme-ov-file#Stereo-Matching)[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值