AAAI 2025 | 川大提出首个基于介观表征的图像篡改检测新范式,定义IML任务SOTA新高度...

7949d4e32fe3cb99ea60771e32378b5c.gif

c76c417a009f0705c4c865511586ad81.png

论文标题:

Mesoscopic Insights: Orchestrating Multi-scale & Hybrid Architecture for Image Manipulation Localization

作者单位:

四川大学(吕建成团队)、香港理工大学,澳门大学

论文链接:

https://arxiv.org/abs/2412.13753

代码链接:

https://github.com/scu-zjz/Mesorch

7169882db571845091becc09da7dfe06.png

背景简介

随着多媒体篡改技术的快速发展,图像篡改的检测和定位正变得越来越复杂。在现有的图像篡改检测工作中,大多数方法主要关注非语义信息(如边缘、噪声等)留下的篡改痕迹。然而,实际的篡改往往针对语义级别的信息(如人脸、树木等),以达到误导或欺骗的目的。在这种情况下,仅依赖非语义信息的检测模型在定位篡改区域时表现出明显的不足。

尽管少数模型试图结合非语义信息与

Android校园二手交易App项目源码(高分期末大作业),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)Android校园二手交易App项目源码(高分期末大作业)And
### 关于2025AAAI会议中的医学图像论文与主题 #### 医学图像处理技术的发展趋势 近年来,随着人工智能技术的进步,特别是深度学习方法的应用,在医学图像分析领域取得了显著进展。这些进步不仅提高了诊断准确性,还促进了个性化医疗的发展[^1]。 #### 主要研究方向 在即将举行的2025年度美国人工智能协会(AAAI)会议上,预计会有大量关于医学影像的研究成果展示。具体来说: - **疾病检测与分类**:利用卷积神经网络(CNNs)和其他先进的机器学习算法来提高早期癌症筛查等任务的效果。 - **分割与定位**:开发更精确的技术用于自动识别器官边界以及病变区域的位置信息。 - **多模态融合**:探索如何有效地结合不同类型的成像数据(如MRI、CT扫描),从而获得更加全面的理解患者状况的方法。 - **生成对抗网络(GAN)**及其变体被广泛应用于合成高质量的虚拟病例样本或者修复低质量的真实图片。 ```python import tensorflow as tf from tensorflow.keras import layers def create_cnn_model(input_shape=(256, 256, 3)): model = tf.keras.Sequential([ layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape), layers.MaxPooling2D((2, 2)), layers.Flatten(), layers.Dense(64, activation='relu'), layers.Dropout(0.5), layers.Dense(num_classes, activation='softmax') ]) return model ``` 此代码片段展示了构建一个简单的CNN模型来进行医学图像分类的一个例子。 #### 数据集和挑战赛 为了推动该领域的进一步发展,许多公开可用的数据集将会成为研究人员关注的重点对象;同时也会有一些针对特定疾病的预测竞赛活动举办,鼓励全球科学家共同解决实际临床问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值