A Multi-Dimensional Benchmark for Assessing the Instruction-Following Capability

828 篇文章

已下架不支持订阅

FollowEval是一个由人类专家创建的中英文基准,用于全面评估大型语言模型(LLM)在字符串操作、常识推理、逻辑推理、空间推理和响应约束等五个关键维度的指令跟随能力。实验显示,现有LLM在这方面的性能远逊于人类,揭示了改进的空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《FollowEval: A Multi-Dimensional Benchmark for Assessing the Instruction-Following Capability of Large Language Models》的翻译。

FollowEval:评估大型语言模型指令跟随能力的多维基准

摘要

有效评估大型语言模型(LLM)的指令跟随能力至关重要。一个不能遵循人类指令的模型可能无法提供可靠和有用的响应。为了实现这一目标,已经构建了各种基准来评估这些模型的指令跟随能力。然而,这些基准测试仅限于一种语言,并且是使用自动化方法构建的,这限制了它们的适用性及其包含的测试示例的质量。为了弥补这一差距,我们在本文中引入了FollowEval基准。这个基准测试由中英文实例组成,所有测试实例都是由人类专家精心制作的。此外,FollowEval基准测试旨在评估以下五个关键指令维度的LLM:字符串操作、常识推理、逻辑推理、空间推理和响应约束。为了提高复杂性并提出足够的挑战,每个测试示例都被设计为评估多个维度。我们使用FollowEval基准评估了各种LLM,发现它们的性能明显落后于人类。这突出了这些模型在遵循指令的能力方面有相当大的改进空间。

1 引言

2 相关工作

3 FollowEval

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值