本文是LLM系列,针对《LPNL: Scalable Link Prediction with Large Language Models》的翻译。
摘要
探索大型语言模型(LLM)在图形学习中的应用是一项新兴的努力。然而,大型图中固有的大量信息对LLM的图学习提出了重大挑战。这项工作专注于链接预测任务,并介绍了LPNL(通过自然语言进行链接预测),这是一个基于大型语言模型的框架,旨在实现大规模异构图上的可扩展链接预测。我们为链接预测设计了新颖的提示,用自然语言表达图的细节。我们提出了一个两阶段采样管道来从图中提取关键信息,并提出了一种分而治之的策略来将输入token控制在预定义的范围内,以应对压倒性信息的挑战。我们基于为链路预测设计的自监督学习来微调T5模型。大量实验结果表明,在大规模图上的链接预测任务中,LPNL优于多个高级基线。
1 引言
2 LPNL体系结构
3 实验
4 相关工作
5 讨论
6 结论
在本文中,我们首次探索了大型语言模型的应用,以解决大规模异构图上的链接预测任务。我们介绍了L