LPNL: Scalable Link Prediction with Large Language Models

828 篇文章

已下架不支持订阅

本文介绍LPNL,一个利用大型语言模型进行大规模异构图链接预测的框架。通过创新提示和两阶段采样策略处理大量信息,微调T5模型并展示在链接预测任务上的优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列,针对《LPNL: Scalable Link Prediction with Large Language Models》的翻译。

LPNL:具有大型语言模型的可伸缩链接预测

摘要

探索大型语言模型(LLM)在图形学习中的应用是一项新兴的努力。然而,大型图中固有的大量信息对LLM的图学习提出了重大挑战。这项工作专注于链接预测任务,并介绍了LPNL(通过自然语言进行链接预测),这是一个基于大型语言模型的框架,旨在实现大规模异构图上的可扩展链接预测。我们为链接预测设计了新颖的提示,用自然语言表达图的细节。我们提出了一个两阶段采样管道来从图中提取关键信息,并提出了一种分而治之的策略来将输入token控制在预定义的范围内,以应对压倒性信息的挑战。我们基于为链路预测设计的自监督学习来微调T5模型。大量实验结果表明,在大规模图上的链接预测任务中,LPNL优于多个高级基线。

1 引言

2 LPNL体系结构

3 实验

4 相关工作

5 讨论

6 结论

在本文中,我们首次探索了大型语言模型的应用,以解决大规模异构图上的链接预测任务。我们介绍了L

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值