Knowledge Graph Large Language Model (KG-LLM) for Link Prediction

题目

用于链接预测的知识图谱大型语言模型 (KG-LLM)

在这里插入图片描述

论文地址:https://arxiv.org/abs/2403.07311
项目地址: https://anonymous.4open.science/r/KG-LLM-FED0

摘要

    知识图谱 (KG) 中的多跳链接预测任务是知识图谱分析领域的一项挑战,因为它要求模型在做出预测之前推理并理解所有中间连接。在本文中,我们介绍了知识图谱大型语言模型 (KG-LLM),这是一个利用大型语言模型 (LLM) 执行知识图谱任务的新型框架。我们首先将结构化知识图谱数据转换为自然语言,然后使用这些自然语言提示来微调 LLM,以增强 KG 中的多跳链接预测。通过将 KG 转换为自然语言提示,我们的框架旨在学习实体及其相互关系的潜在表示。为了展示 KG-LLM 框架的有效性,我们微调了该框架中的三个领先 LLM,包括 Flan-T5、Llama2 和 Gemma。此外,我们探索了该框架为 LLM 提供零样本能力以处理以前未见过的提示的潜力。实验结果表明,KG-LLM 显著提高了模型的泛化能力,从而可以在不熟悉的场景中做出更准确的预测。我们的代码可以在 https://anonymous.4open.science/r/KG-LLM-FED0 上找到。

简介

    在数据表示和组织领域,知识图谱 (KG) 已经成为一种结构化且有效的方法,近年来引起了人们的极大兴趣。尽管 KG 中的双节点链接预测已经取得了有希望的结果,但多跳链接预测仍然是一项艰巨的任务。在现实生活中,多跳链接预测起着至关重要的作用,因为通常我们对两个相距很远的实体之间的关系更感兴趣,而不是直接连接。这要求模型通过中间实体及其关系进行推理。另一个挑战是调试 KG 模型预测的问题,特别是在判别预测的背景下,模型缺乏解释推理步骤,掩盖了错误的来源,降低了准确性和性能。因此,开发能够生成并精确预测知识图谱中多跳链接的模型是一项关键挑战。

    从历史上看,解决知识图谱相关任务的方法可以追溯到基于嵌入的方法,以及最近 LLM 的进步 [28]。最初,基于嵌入的方法起着至关重要的作用,利用技术将知识图谱中的实体和关系表示为低维向量,以通过保留图的结构和语义完整性来解决链接预测任务 [2, 30, 5, 13]。随着该领域的发展,LLM 的集成开始提供新的范式,利用大量数据和高级架构进一步增强知识图谱的预测能力和语义理解 [1, 38, 39, 37, 22]。这种转变表明知识图谱的预测能力和语义理解能力正在显著提高。

    从使用纯数学表示到更具情境感知能力的方法(可以更好地理解知识表示)的改进。尽管取得了这些成功,但我们的研究强调了先前方法尚未完全解决的三大挑战,我们的方法旨在解决这些挑战。首先,主要关注判别性而非生成性模型和结果,而不是推理过程,这凸显了现有方法的差距,凸显了需要善于利用推理来解决 KG 中的多跳链接预测的模型。其次,现有方法主要侧重于预测两个直接节点之间的链接,而多跳链接预测领域基本上尚未探索。

在这里插入图片描述

    这种限制影响了模型导航和推断扩展节点序列之间的连接的能力。最后,传统模型通常缺乏泛化能力,使得它们在面对看不见的任务时效果较差。为了弥补这些差距,我们提出了知识图谱大型语言模型 (KG-LLM),这是一种新颖的多跳链接预测方法。如图 1 所示,知识图谱中的节点通过特定关系相互连接。最初,我们的框架从原始知识图谱数据集获取输入。经过预处理后,知识图谱中的所有路径将转换为思路链 (CoT) 提示 [33],每个提示包含一系列关系语句,可表示为 {节点 1 (与节点 2 有关系 x),节点 2 (与节点 3 有关系 y),等等}。多跳问题的复杂性由其路径长度和节点数决定。

    通过对三个大型语言模型 (LLM):Flan-T5 [31]、Llama2 [24] 和 Gemma [23] 进行指令微调 (IFT) [31],我们的框架已准备好在测试阶段增强多跳链路预测性能。此外,通过整合上下文学习 (ICL) [35],该模型不仅得到了改进,而且还具有解决未见提示的能力,展示了我们的方法在解决多跳链接预测挑战方面的创新性。 我们的研究提出了 KG-LLM 框架作为多跳链接预测任务的创新方法。我们的主要贡献是:

  • 通过将知识图谱转换为 CoT 提示,我们的框架使 LLM 能够更好地理解和学习实体的潜在表示及其在知识图谱中的关系。
  • 我们对真实世界数据集的分析证实,我们的框架改进了 KG 中的生成式多跳链接预测,强调了在训练期间结合 CoT 和指令微调的好处。
  • 我们的研究结果还表明,我们的框架显着提高了 LLM 在响应未见提示方面的通用性。

相关工作

    最近,研究人员使用图神经网络 (GNN) 模型来解决各种与图相关的任务,大大推动了该领域的发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值