CultureLLM: Incorporating Cultural Differences into Large Language Models

828 篇文章

已下架不支持订阅

本文介绍CultureLLM,一种经济高效的解决方案,用于将文化差异纳入大型语言模型。通过世界价值调查(WVS)数据和语义增强,CultureLLM在9种文化和59个数据集上展现出优于GPT-3.5和Gemini Pro的性能,与GPT-4相当。尽管存在局限性,如未在大规模开源模型上实施,但该研究为LLM的跨文化理解和生成提供了重要进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《CultureLLM: Incorporating Cultural Differences into Large Language Models》的翻译。

CultureLLM:将文化差异融入大型语言模型

摘要

据报道,由于来自英语语料库的训练数据占主导地位,大型语言模型(LLM)偏向于某些文化。由于多语言文化数据的收集成本往往很高,现有的工作通过提示工程或特定文化的预训练来处理这一问题。然而,他们可能会忽视低资源文化的知识不足,并需要大量的计算资源。在本文中,我们提出了CultureLLM,这是一种将文化差异纳入LLM的经济高效的解决方案。CultureLLM采用世界价值调查(WVS)作为种子数据,并通过所提出的语义数据扩充生成语义等效的训练数据。仅使用来自WVS的50个种子样本和增强的数据,我们对覆盖丰富和低资源语言的9种文化的特定文化LLM和一个统一模型(CultureLLMOne)进行了微调。在60个文化相关数据集上进行的广泛实验表明,CultureLLM显著优于GPT-3.5(8.1%)和Gemini Pro(9.5%)等各种对应物,其性能与GPT-4相当甚至更好。我们的人类研究表明,生成的样本在语义上与原始样本等效,为LLM增强提供了有效的解决方案。

1 引言

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值