本文是LLM系列文章,针对《EmoBench: Evaluating the Emotional Intelligence of Large Language Models》的翻译。
EmoBeach:评估大型语言模型的情商
摘要
大型语言模型(LLM)的最新进展突出了对健壮、全面和具有挑战性的基准的需求。然而,关于评估他们的情商(EI)的研究相当有限。现有的基准有两个主要缺点:一是主要关注情绪识别,忽视了通过情绪理解调节情绪和促进思维等基本的EI能力;其次,它们主要是从现有的数据集构建的,这些数据集包括频繁的模式、显式信息和注释错误,导致评估不可靠。我们提出了EMOBENCH,这是一个基于既定心理学理论的基准,并提出了机器EI的全面定义,包括情绪理解和情绪应用。EMOBENCH包括一套400个手工制作的中英文问题,这些问题经过精心设计,需要彻底的推理和理解。我们的发现揭示了现有LLM的EI与普通人类之间的巨大差距,为未来的研究指明了一个有希望的方向。我们的代码和数据将在https://github.com/Sahandfer/EmoBench.