本文是LLM系列文章,针对《GuardReasoner: Towards Reasoning-based LLM Safeguards》的翻译。
摘要
随着LLM对安全关键应用的影响越来越大,使用护栏确保其安全仍然是一个关键挑战。本文通过引导保护模型学习推理,提出了一种新的LLM保护机制GuardReasoner。具体来说,我们首先创建GuardReasonerTrain数据集,该数据集由127K个样本和460K个详细的推理步骤组成。然后,我们引入推理SFT来解锁保护模型的推理能力。此外,我们还提出了硬样本DPO,以进一步加强他们的推理能力。通过这种方式,GuardReasoner实现了更好的性能、可解释性和通用性。对3个护栏任务的13个基准点进行了广泛的实验和分析,证明了其优越性。值得注意的是,GuardReasoner 8B的F1成绩平均比GPT-4o+CoT高出5.74%,LLaMA Guard 3 8B高出20.84%。我们发布了GuardReasoner不同尺度(1B、3B、8B)的训练数据、代码和模型。