Dynamic Benchmark Construction for Evaluating Large Language Models on Real-World Codes

在这里插入图片描述

一、文章主要内容

本文聚焦于大型语言模型(LLMs)在真实软件开发场景中代码生成能力的评估问题,针对现有基准测试存在的数据污染、测试严谨性不足、依赖处理缺失等缺陷,提出了动态基准测试构建框架CODE2BENCH,并基于该框架构建了首个动态基准测试集CODE2BENCH-2505。

1. 现有基准测试的核心问题

  • 数据污染风险高:多数静态基准测试集(如HumanEval、MBPP)依赖固定数据集,LLMs在训练过程中可能接触到这些数据,导致评估结果失真;部分动态基准测试(如LiveCodeBench)虽能缓解污染,但未直接从真实软件仓库提取任务,缺乏场景真实性。
  • 测试严谨性不足:多数基准测试采用手动设计或简单生成的测试用例,难以覆盖复杂逻辑和边缘情况,无法有效暴露模型的细微缺陷(如EvalPlus虽增强测试,但仍基于静态手动任务)。
  • 依赖处理与多语言支持缺失:现有基准测试要么未处理代码依赖(如HumanEval-X),要么依赖处理不规范(如RepoBench),且多数仅支持单一语言,无法评估LLMs的跨语言代码生成能力。

2. CODE2BENCH框架核心流程

框架通过“候选筛选”和“基准

"大规模基准数据集用于评估泛锐化性能"是一个用于评估图像泛锐化算法表现的数据集。泛锐化是一种图像处理技术,旨在通过将低分辨率的多光谱图像与高分辨率的全色图像融合,以产生具有较高空间分辨率和丰富光谱信息的图像。这种技术在许多遥感应用中都很有用,例如土地利用监测、资源管理和环境监测。 该数据集的规模大,包含了大量的多光谱和全色图像对,这些图像对均具有全面的注释和质量测量指标。这些图像对来自各种不同的遥感源,涵盖不同的场景和条件。数据集的构建过程经过精心设计,以保证评估结果的准确性和可靠性。 使用该数据集,研究人员和开发者可以对他们的泛锐化算法进行全面的评估和对比。他们可以将自己的算法应用于数据集中的图像对,并使用数据集中提供的注释进行性能评估。这些注释可以包括图像质量评价指标,如结构相似性指数(SSIM)和峰值信噪比(PSNR),或者一些更复杂的图像质量评价方法,如目标检测和目标分类任务的准确率。通过与其他算法进行比较,开发者可以了解他们的算法在不同场景和条件下的表现如何,并进一步改进和优化他们的方法。 "大规模基准数据集用于评估泛锐化性能"的建立为泛锐化算法的发展提供了一个公共的平台,促进了该领域的研究和进步。研究人员和开发者可以根据数据集中的结果和经验得出更好的算法和技术,进一步提高泛锐化算法在实际应用中的效果。这个数据集的存在为遥感图像处理的研究和应用带来了很大的推动力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值