文章安排:
(1)先从信息论的角度分析如何划分数据
(2)将数学公式运用到实际的数据集
(3)画出一颗决策树
(4)一个实战例程
(5)实验总结
1. 决策树是啥树?
决策树,见字如面。一棵可以做出决策的树。
比如常见的垃圾邮件检测(朴素贝叶斯也可以)(检测邮件发送的域名地址,识别邮件中的中的信息,找到垃圾邮件经常出现的词语如:discount,free,buy),进而做出决策是垃圾邮件,还是正常通信邮件。
为何选择决策树
优点:计算复杂度不高,输出易于理解
缺点:容易产生过拟合
使用场景:数值型和标称型数据
2. 决策树的构造
流程:
(1)收集数据:可以使用任何方法(文末提供数据集,哈哈)
(2)准备数据:树构造算法只适用标称型数据,因此数值型数据需要离散化(类似数字信号处理模数转换的幅值量化)
(3)分析数据:可以使用任何方法,构造树完成后,应及时检查图形是否符合预期
(4)训练算法:构造树的数据结构
(5)测试算法:使用经验树计算错误率
(6)使用算法:写一篇可以跑,不会报错的博客,哈哈哈
采用ID3算法,每次划分数据集采用一个特征,那么该选择那个特征作为我们划分依据呢?
2.1 信息增益
分类的依据:相似的数据分为一类,每次分类后数据,处于同一分支结构的数据有较高的相似性。并且用作分类依据的特征去掉后将使得数据集的无序度降低,数据变得更加整齐。
度量数据有序程度的依据是啥?
引入信息论
在划分数据集的前后信息发生的变化称为信息增益,获得信息增益最高的特征就是我们分类最好的依据。
集合信息的度量方式称为香农熵或者熵
熵越大数据的混乱度越高,数据越无序,相似度更低。
熵就是信息的期望值,如果待分类的事务可能出划分在多个分类之中,则符号x(i)的信息定义为:
我们需要计算数据集的熵,因此只要累加求和即可:
至此,我们可以分析划分前后数据集的熵如何变化。
计算数据集的香农熵
from math import log
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet: #the the number of unique elements and their occurance
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob, 2) #log base 2
return shannonEnt
熵越高,混合的数据越多,我们可以在数据集中添加更多的分类,观察数据集熵的变化
2.2 划分数据集
按照给定的特征划分数据集,第一个参数为待划分的数据集,第二个参数为划分数据集的特征,第三个参数为需要返回的特征值
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
例:根据特征0划分数据集,返回特征0为1的数据记录
2.3 选择最好的数据集划分方式
上一小节,我们学习了如何衡量数据集的混乱程度。我们目标:按照数据的内在规律不断划分数据集为小的分支,直到叶子节点,则分类完毕。
我们将对每个特征划分的数据集求计算一次熵,然后判断该特征是否为最好的数据集划分特征(即一个决策过程)
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #the last column is used for the labels
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures): #iterate over all the features
featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
uniqueVals = set(featList) #get a set of unique values
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy
if (infoGain > bestInfoGain): #compare this to the best gain so far
bestInfoGain = infoGain #if better than current best, set to best
bestFeature = i
return bestFeature
这里将每一个特征作为一次数据集的划分依据,然后求得划分后的数据集的熵newEntropy,当新的数据集的熵最小时,即选取该特征划分数据集前后获得最大的信息增益时,数据的混乱度降低,该特征为最好的数据集划分特征。
2.4 递归构建决策树
上述数据集划分结束的标志是:每一条记录都分配到一个叶子节点,每次选取一个特征后,都将数据集划分为几个更小的数据集,我们只要对分割后的分支数据集继续使用chooseBestFeatureToSplit函数即可继续划分数据集,递归可以简单的实现这一过程。
我们在实际操作中,还可以指定叶子结点的个数(即分类数,C4.5和CART算法)
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]#stop splitting when all of the classes are equal
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
这里通过字典的嵌套模拟树的分支操作。
3. 画出一棵决策树
如果想要画出一棵好看的树,需要计算树的深度、宽度信息,使用matplotlib函数,过程过于繁琐,这里直接可以调用==treePlotter.createPlot(lensestree)==画出一棵美观的决策树
'''
Created on Oct 14, 2010
@author: Peter Harrington
'''
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def getNumLeafs(myTree):
numLeafs = 0
firstStr = list(myTree)[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
numLeafs += getNumLeafs(secondDict[key])
else: numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
maxDepth = 0
firstStr = list(myTree)[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
thisDepth = 1 + getTreeDepth(secondDict[key])
else: thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth
return maxDepth
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
numLeafs = getNumLeafs(myTree) #this determines the x width of this tree
depth = getTreeDepth(myTree)
firstStr = list(myTree)[0] #the text label for this node should be this
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
plotMidText(cntrPt, parentPt, nodeTxt)
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
plotTree(secondDict[key], cntrPt, str(key)) #recursion
else: #it's a leaf node print the leaf node
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict
def createPlot(inTree):
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #no ticks
#createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0
plotTree(inTree, (0.5, 1.0), '')
plt.show()
#def createPlot():
# fig = plt.figure(1, facecolor='white')
# fig.clf()
# createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
# plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
# plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
# plt.show()
def retrieveTree(i):
listOfTrees = [{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
]
return listOfTrees,[i]
# createPlot(thisTree)
测试代码
if __name__ == '__main__':
mydat,labels=createDataSet()
thistree = createTree(mydat,labels)
treePlotter.createPlot(thistree)
测试图样:
4. 一个实战例程
使用决策树预测隐形眼镜类型
数据集源代码都有,有需要评论留言邮箱即可,也可给俺发邮件836808298@qq.com
实验结果图例:
5.实验总结
决策树的核心是决策过程,我们通过信息论的香农熵,去衡量划分数据的混乱程度,进而得到决策的依据。该算法ID3使用单个特征划分,直至划分到叶子节点。目前流行的是C4.5和CART算法,以后填坑,哈哈。
决策树的过度匹配问题可以通过决策树的裁剪实现,提高算法的泛化能力,以后填坑,哈哈。