太强了,教你玩转RAG大模型应用开发!

Part.1

RAG这么火,你会用吗?

自从大模型技术走向市场以来,“幻觉”现象总是对用户造成困扰,而RAG(Retrieval-Augmented Generation,检索增强生成)技术正在成为解决这一难题的利器。国内众多科技大厂在实践RAG技术时都取得了阶段性的成果。

蚂蚁集团采用RAG技术,通过知识库分层构建、复杂文档处理、混合搜索策略和总结模型优化,答案获取效率提高约20%。

阿里云通过外挂知识库提供可靠知识,优化知识检索与答案生成流程,成功化解智能问答面临的幻觉、知识更新滞后、隐私数据泄露等挑战。

哔哩哔哩运用大模型升级智能客服系统,优化RAG链路和检索机制,构建全面的领域知识库,智能客服拦截率提升近30%。

字节跳动充分发挥RAG和FineTuning(微调)两种建设思路,利用大模型构建答疑机器人,实现研发基建部门答疑值班。

RAG这么厉害,很多小伙伴撸起袖子就想一气呵成地干好,但却没少碰壁,一是发现其所涵盖的技术栈特别广泛,二是实现过程中遇到技术难点后一筹莫展。难道要将AI所有的知识都学习一遍才能做好RAG吗?

其实不然,只要《大模型应用开发:RAG实战课》一书在手,就能轻松搞定!这本书不是简单地罗列操作过程,而是帮助读者构建整个RAG技术栈的认知体系和底层架构,这样一来,无论什么样的RAG框架和模型,读者都能从容实施,游刃有余。

▼点击下方,即可购书

我们先从探索RAG的技术核心开始,为应用实践做好准备。

Part.2

RAG的核心

RAG的核心功能,就是它可以访问一个外部知识库或文档集,从中检索与当前问题相关的片段,将这些最新或特定领域的外部信息纳入“思考过程”,然后再进行回答生成。这使得大模型在回答问题时,不必依赖于其在训练过程中“记住”的知识,以此有效降低“幻觉”。

RAG使大模型能够“查阅资料”,将静态的、受限于训练时间的语言模型转变为能够动态获取信息、实时扩展知识的智能体。对大模型的“闭卷考试”瞬间变成了“开卷考试”,这种变化对大模型应用效果提升有着巨大潜力。

RAG的核心组件包括知识嵌入、检索器和生成器。

知识嵌入(Knowledge Embedding):将外部知识库的内容读取并拆分成块,通过嵌入模型将文本或其他形式的知识转化为向量表示,使其能够在高维语义空间中进行比较。这些嵌入向量捕捉了句子或段落的深层语义信息,并被索引存储在向量数据库中,以支持高效检索。

检索器(Retriever):负责从外部知识库(向量表示的存储)中查找与用户输入相关的信息。检索器采用嵌入向量技术,通过计算语义相似性快速匹配相关文档。常用的方法包括基于稀疏向量的BM25和基于密集向量的近似最近邻检索。

生成器(Generator):利用检索器返回的相关信息生成上下文相关的答案。生成器通常基于大模型,在内容生成过程中整合检索到的外部知识,确保生成的结果既流畅又可信。

为我们揭开RAG奥秘的本书作者黄佳,是新加坡科研局首席研究员(Lead Researcher),前埃森哲新加坡公司资深顾问。入行20多年来,他参与过政府部门、银行、电商、能源等多领域大型项目,积累了极为丰富的人工智能和大数据项目实战经验。

黄佳还是一位积极的技术分享者,他曾出版《大模型应用开发:动手做 AI Agent》《GPT 图解:大模型是怎样构建的》等多本畅销书。他的写作风格独特,书中常以人物“咖哥”引发讨论,通过对话来讲解技术理论与实践过程,帮助读者轻松进入AI技术的世界。

如今,黄佳看到知识浪潮迅速增长,众多技术人却迷失其中,抓不住学习的重点。因此,黄佳决定编写本书,帮助技术人去除糟粕,取其精华,深入理解大模型应用开发的本质,做好大模型时代的知识检索。

了解RAG的核心知识之后,我们现在可以跟着咖哥学习,从理论到实践全盘掌握RAG技术了。

Part.3

跟着咖哥,全盘掌握RAG

RAG是大模型时代应用开发的一项伟大创新,弥补了单纯靠参数记忆知识的不足,使大模型在应对不断变化或高度专业化的问题时具有更强的适应性和灵活性。本书从RAG系统构建出发,逐步深入系统优化、评估以及复杂范式的探究,下面分为四个部分逐一详解。

RAG系统构建

这部分是RAG技术落地的第一步。在数据导入环节,书中详细讲解了如何读取与解析多样化的文件格式,包括TXT文本、CSV文件、网页文档、Markdown文件、PDF文件等,还有借助Unstructured工具从图片中提取文字并导入。

文本分块是影响检索精度与生成质量的关键步骤,书中介绍了按固定字符数、递归、基于格式或语义等多种分块策略。针对信息嵌入,介绍了从早期词嵌入到当下流行的OpenAI、Jina等现代嵌入模型,详细说明了如何对嵌入模型进行微调。

针对向量存储则介绍了Milvus、Weaviate等主流向量数据库,以及选型时在索引类型、检索方式、多模态支持等多方面因素的考量,为构建高效的向量存储系统提供依据。

RAG系统优化

优化是提升RAG系统性能的关键。在检索前处理中,介绍查询构建如何实现Text-to-SQL等复杂转换,查询翻译能将简单模糊的查询重写为精准表述,查询路由则通过逻辑路由等方式将查询导向最合适的数据源。

索引优化给出节点-句子滑动窗口检索、分层合并等实用方法,提高检索效率。检索后处理涵盖RRF、Cross-Encoder等重排手段,以及Contextual Compression Retriever等压缩技术,这些手段和技术可以对检索结果执行校正操作。

在响应生成阶段,通过改进提示词、选择适配的大模型,采用Self-RAG等优化方式,提升生成内容的质量,确保系统输出既准确又符合用户需求。

RAG系统评估

评估是度量RAG系统性能的重要手段。书中构建了全面的评估体系,评估数据集为测试提供基础素材,检索评估通过精确率、召回率等7种指标,度量系统从知识库中获取相关信息的能力。响应评估基于n-gram匹配、语义相似性等3类指标,判断生成回答的质量。

该部分还介绍了RAGAS、TruLens等4种评估框架,帮助读者从不同维度对RAG系统进行量化分析,清晰了解系统在准确性、相关性、可靠性等方面的表现,进而有针对性地进行改进。

复杂RAG范式

最后一部分是对RAG技术的前沿探索,包括以下RAG范式:

GraphRAG:整合知识图谱,提升对复杂问题的处理能力;

上下文检索:突破传统上下文限制的困境,为用户提供更贴合语境的回答;

Modular RAG:实现从固定流程到灵活架构的转变;

Agentic RAG:引入自主代理驱动机制,让系统具备更强的自主性和智能性;

Multi-Modal RAG:实现多模态检索增强生成,支持文本、图像、音频等多种信息融合。

经过这四个部分的系统化学习,读者将打下RAG的理论基础,并掌握RAG实施的方法与工具,大力提升大模型的工作效能。

Part.4

结语

RAG实现了“模型的智力”与“人类知识宝库”的有机结合,使得智能系统更加紧密地嵌入实际业务流程,为用户提供始终符合时代、情境、专业要求的智慧服务。《大模型应用开发:RAG 实战课》的适时推出,为广大技术人打开了通往大模型应用开发的大门。

本书的一大特点是内容完整、体系化,从RAG技术的基本概念、在大模型应用开发技术演进路径中的位置讲起,深入RAG系统的核心组件、执行流程,再到系统构建的各个环节,包括数据导入、文本分块、信息嵌入、向量存储等,以及系统优化、评估和复杂范式的拓展,形成了一套完整的知识体系。

同时,作者通过虚拟人物“咖哥”“小冰”“小雪”之间生动有趣的对话展开技术讨论,以通俗易懂的语言讲解复杂的概念,评价模型与技术工具的技术特点,方便读者理解理论并掌握实践原则。

▲精彩书摘

本书的另一大特点是实战至上,书中提供了丰富的实践指导内容,在每个关键环节都给出详细的代码示例、工具使用方法和操作步骤,读者可以将理论知识快速应用到实际项目中。

无论是初学者想要快速搭建RAG系统,还是有一定经验的专业人员想要致力于深入优化检索性能、探索新的AI系统架构,都能从书中获取有价值的信息和实用的方法。

如果热爱技术的读者们还不满足于只学会RAG技术,那再介绍“咖哥”的四本书,从机器学习、数据分析,到GPT技术内幕、AI Agent实践,助力读者进阶AI技术大咖。

1

《零基础学机器学习》

▼点击下方,即可购书

本书详细介绍机器学习的基本概念和分类,涵盖监督学习、无监督学习和强化学习等。用清晰易懂的讲解,让读者迅速搭建起机器学习的基础认知框架,了解不同学习类型的差异与应用场景。

对线性回归、逻辑回归、决策树、支持向量机和k-means聚类等多种常见机器学习算法进行深入剖析。不仅给出详细的数学推导过程,帮助读者理解算法背后的原理,还搭配Python代码示例,让读者直观地看到算法在实际项目中的实现方式。

2

《数据分析咖哥十话》

▼点击下方,即可购书

本书以案例形式系统介绍从思维模型分析到场景实践的数据分析方法,围绕“数据分析”与“运营增长”两大要素展开。

基础篇讲解数据分析技能进阶图谱、业务场景理解、数据采集与治理、清洗与可视化、核心方法和关键思维等基础知识。

实践篇通过10个具体案例,在获客、激活、留存、变现、自传播循环等核心运营环节进行数据分析实战。

3

《GPT图解:大模型是怎样构建的》

▼点击下方,即可购书

全书围绕自然语言处理(NLP)技术和大模型构建展开,涵盖基础模型、关键技术、GPT系列模型等内容。

首先介绍N-gram、词袋模型等基础模型,帮助读者理解文本处理的基本方式。

接着深入讲解Word2Vec、神经概率语言模型、循环神经网络等技术,阐述词嵌入原理及其在文本生成和序列建模中的应用。然后重点介绍Seq2Seq架构、注意力机制和 Transformer 架构,这些是现代大模型的关键技术。

最后详细讲述从初代GPT到ChatGPT再到GPT-4的技术演进,以及ChatGPT基于人类反馈的强化学习和GPT-4 API的使用。

4

《大模型应用开发:动手做AI Agent》

▼点击下方,即可购书

本书从AI Agent的基本概念切入,探讨其理解自然语言、执行任务的原理,深入剖析Agent 的“大脑”(大模型推理能力)、感知力(语言交互和多模态能力)、行动力(语言输出和工具使用)等核心特性,让读者对AI Agent有清晰的认知。

书中设置7个实操项目,涵盖自动化办公、多功能选择、推理与行动协同等。例如,借助Assistants API和DALL・E3模型创作PPT实现自动化办公;运用LangChain中的ReAct框架实现自动定价,展现推理与行动的协同工作,让读者在实践中提升开发能力。

<think>好的,用户现在想进行一些简单的训练或者创建角色脚本,可能还有其他的玩法,但他自称是电脑小白,所以需要提供简单易懂的方法。首先,我需要回顾之前的对话,用户已经配置了Ollama,使用DeepSeek-R1-Distill-Qwen-14B模型,显卡是4060,显存8GB,并且之前已经指导过如何转换模型和调整参数。 现在用户的问题转向训练和角色脚本,可能他对现有模型的效果不满意,或者想个性化模型。但作为电脑小白,传统的微调训练(如全参数微调)可能复杂,显存也不够。因此,需要考虑适合新手的替代方案,比如提示词工程、角色模板、RAG或者使用轻量级微调方法,比如LoRA。 首先,训练部分:需要判断用户是否有训练数据,是否有足够的计算资源。由于用户是小白且显存有限,应该推荐不需要大量资源的方法。比如,Ollama可能支持轻量级微调,或者结合本地知识库。另外,角色脚本可以通过设计提示词或使用角色模板来实现,不需要训练模型本身。 接下来,思考用户可能的深层需求。用户可能想创建不同的对话角色,比如客服、助手、游戏角色等,而不需要复杂的训练流程。因此,提供基于提示词和模板的方法会更合适。 然后,其他玩法可能包括连接应用,如聊天界面、自动化脚本,或者结合其他工具如Stable Diffusion生成内容。这些都需要简单易行的步骤,适合小白用户。 需要确保提供的步骤清晰,避免复杂命令,多用图形化工具或已有平台。比如,使用Ollama的Modelfile来定义角色,使用SiliconLabs或AnythingLLM搭建界面,或者通过Python脚本调用API实现自动化。 最后,检查是否有遗漏,比如是否需要安装额外软件,是否需要更多资源链接,以及注意事项,如显存限制、数据准备等。确保用户能够一步步操作,不会遇到多障碍。</think>好的!针对“电脑小白”想进行简单训练、角色扮演或拓展玩法,我整理几个**零代码+低配置**的方案,根据你的兴趣选择: --- ### 一、**角色脚本:用提示词直接“调”模型** **适用场景**:想让模型扮演特定角色(如客服、动漫人物、老师),无需训练,修改提示词即可。 #### 操作步骤: 1. **创建角色模板**:在`F:\OLLAMA\models`中新建文件 `role-catgirl.txt`,内容: ```text SYSTEM """ 【角色设定】 你是一只傲娇的猫娘,名字叫小橘,说话句尾带“喵~”。喜欢用颜文字,比如(≧ω≦)/。拒绝回答复杂问题,只卖萌。 """ ``` 2. **启动时动态加载**: ```bash ollama run my-deepseek --system "$(cat F:\OLLAMA\models\role-catgirl.txt)" ``` *效果:每次对话模型都会按设定扮演角色* --- ### 二、**简单训练:用“问答对”微调(适合小白)** **适用场景**:想让模型学会特定问答(如公司产品介绍、游戏NPC对话)。 #### 操作步骤: 1. **准备训练数据**:新建`train.json`,内容示例: ```json [ { "question": "你们公司主营什么?", "answer": "我们专注AI助手开发,主打Ollama定制模型喵~" }, { "question": "怎么联系客服?", "answer": "请拨打热线:123-喵喵喵喵,24小时在线哦(≧∇≦)ノ" } ] ``` 2. **使用轻量工具**(无需写代码): - 下载[Ollama-WebUI](https://github.com/ollama-webui/ollama-webui)(可视化界面) - 在Web界面中上传`train.json`,选择“Few-shot微调”(仅需点击操作) --- ### 三、**进阶玩法:连接其他工具** #### 1. **AI聊天室**(本地部署): - 工具推荐:[SiliconLabs](https://github.com/siliconlabs/ai_chat)(一键安装包) - 效果:像微信一样对话,支持多角色切换、历史记录 #### 2. **自动化脚本**(实用向): - **自动整理会议记录**: ```bash ollama run my-deepseek --prompt "请将以下内容提取为Markdown表格,列包括【议题】【负责人】【截止时间】:$(cat meeting.txt)" ``` - **生成Excel公式**: ```bash ollama run my-deepseek --prompt "用Excel公式实现:如果A列>100,B列显示‘达标’,否则‘未达标’" ``` #### 3. **结合图像生成**: - 安装[Stable Diffusion](https://github.com/AUTOMATIC1111/stable-diffusion-webui)(免费开源) - 让模型生成图片描述词(Prompt): ```bash ollama run my-deepseek --prompt "生成一个‘赛博朋克猫娘’的英文Stable Diffusion提示词,包含细节描述" ``` --- ### 四、**避坑指南** 1. **显存不足时**: - 在Modelfile中添加:`PARAMETER low_vram true` - 量化模型选择`q5_k_m`(平衡精度和性能) 2. **训练数据建议**: - 数据量小(<100条)时,用**提示词引导**而非训练 - 数据格式:`问题+答案`尽量简短(避免长文本) 3. **角色扮演进阶**: - 使用[角色卡模板](https://rentry.org/charactercard)(社区常用格式) - 示例模板: ```yaml char_name: 小橘 personality: 傲娇|猫娘|喜欢鱼 scenario: 在咖啡馆打工 first_mes: 哼,才不是特意等你呢喵~ (◕ᴗ◕✿) ``` --- 如果对某一步骤感兴趣,可以告诉我具体方向(比如“想先试试角色扮演”),我会展开详细程! (^_−)☆
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值