GitHub最强RAG保姆级教程!手把手带你玩转最火RAG技术,本地部署+实战案例一次搞定!

GitHub热门项目RAG_Techniques刚刚开源,集成了30+前沿技术方案,覆盖从基础检索到多模态增强的全场景实现。无论你是AI新手还是资深开发者,这个"RAG技术百科全书"都能帮你突破性能瓶颈!

🔥 为什么选择这个项目?

1. 最全场景覆盖

  • ✅ 基础RAG部署、CSV文件检索、多模态融合(PDF/PPT/图片)

  • ✅ 复杂场景支持:知识图谱增强、自修正RAG、迭代式检索

  • ✅ 企业级功能:语义分块、上下文压缩、动态过滤

2. 开箱即用的工程化方案

每个技术模块都提供:

  • 📄 标准化文档说明

  • 🛠️ 可复现的代码模板

  • 📊 性能优化指南

3. 持续迭代的生态

  • 🌐 微软GraphRAG、自研可控代理等前沿方案已集成

  • ⏩ 每周更新技术方案


💻 本地部署指南(3分钟上手)

环境准备

# 克隆项目
git clone https://github.com/NirDiamant/RAG_Techniques.git
cd RAG_Techniques

# 安装依赖(需Python 3.8+)
pip install -r requirements.txt

🎯 全场景覆盖清单:30+ RAG实现方案

一、基础场景

  1. CSV文件问答系统
    • 支持结构化数据直接构建知识库 • 示例:销售数据分析、客户信息查询

  2. 文档级上下文增强
    • 自动生成文档摘要作为检索锚点 • 场景:法律条款快速定位

  3. 动态分块策略
    • 支持固定分块/语义分块/命题分块 • 应用:长文本处理(论文/财报分析)


二、查询优化场景

  1. HyDE假设性文档生成
    • 通过虚拟问题增强检索匹配 • 案例:模糊需求处理("找类似特斯拉的案例")

  2. 子查询分解技术
    • 复杂问题拆解为原子问题 • 示例:"比较A和B在X场景的表现" → 分解为A/X、B/X独立检索

  3. 多语言查询转换
    • 自动翻译+本地化术语适配 • 场景:跨国企业多语言知识库


三、上下文处理场景

  1. 上下文压缩技术
    • 关键信息提取(保留率>90%) • 应用:移动端轻量化部署

  2. 相邻上下文扩展
    • 检索核心句+前后关联句 • 案例:法律条款解释性检索

  3. 多文档融合摘要
    • 跨文档信息整合生成 • 场景:行业报告自动生成


四、检索优化场景

  1. 混合检索系统
    ◦ 向量搜索+关键词搜索+语义搜索 ◦ 示例:专利检索(精确术语+概念检索)

  2. 智能重排引擎
    ◦ LLM相关性评分+元数据加权 ◦ 应用:电商商品多维度检索

  3. 时效性过滤
    ◦ 按时间维度动态调整权重 ◦ 案例:新闻事件追踪系统


五、企业级场景

  1. 知识图谱增强
    ◦ 实体关系网络构建 ◦ 场景:供应链风险识别

  2. 权限分级检索
    ◦ 基于RBAC的细粒度控制 ◦ 示例:金融合规文档分级访问

  3. 审计追踪系统
    ◦ 检索过程全链路追溯 ◦ 应用:医疗诊断记录审计


六、特殊领域场景

  1. 多模态检索
    ◦ 支持文本/图片/PPT混合检索 ◦ 案例:设计素材库("找蓝色科技感PPT模板")

  2. 代码知识库
    ◦ 支持代码片段语义检索 ◦ 场景:内部代码资产复用

  3. 表格数据问答
    ◦ CSV/Excel结构化查询 ◦ 应用:财务报表智能分析


七、高级技术场景

  1. 自修正RAG
    ◦ 错误检测→自动重检索→答案修正 ◦ 案例:客服系统容错处理

  2. 迭代式检索
    ◦ 多轮检索结果交叉验证 ◦ 应用:学术论文查证系统

  3. 可控代理系统
    ◦ 确定性工作流+LLM推理结合 ◦ 场景:金融风险评估流程


八、行业解决方案

  1. 医疗文献分析
    ◦ 支持PMID直接检索 ◦ 功能:药物副作用对比分析

  2. 法律条款检索
    ◦ 法条版本控制+关联案例推荐 ◦ 示例:新法规影响分析

  3. 教育知识库
    ◦ 错题知识点关联检索 ◦ 应用:个性化学习路径推荐


九、前沿实验场景

  1. 实时网络增强
    ◦ 本地知识库+搜索引擎混合 ◦ 案例:突发新闻事实核查

  2. 多Agent协作
    ◦ 检索Agent+验证Agent+生成Agent协同 ◦ 场景:投研报告自动生成

  3. 个性化记忆库
    ◦ 用户历史交互记忆检索 ◦ 应用:智能写作助手风格适配


📌 每个场景都提供:
✅ 独立实现模块
✅ 性能优化指南
✅ 行业最佳实践
✅ 可扩展接口
立即访问GitHub仓库探索完整实现!

https://github.com/NirDiamant/RAG_Techniques

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值