GitHub热门项目RAG_Techniques刚刚开源,集成了30+前沿技术方案,覆盖从基础检索到多模态增强的全场景实现。无论你是AI新手还是资深开发者,这个"RAG技术百科全书"都能帮你突破性能瓶颈!
🔥 为什么选择这个项目?
1. 最全场景覆盖
-
✅ 基础RAG部署、CSV文件检索、多模态融合(PDF/PPT/图片)
-
✅ 复杂场景支持:知识图谱增强、自修正RAG、迭代式检索
-
✅ 企业级功能:语义分块、上下文压缩、动态过滤
2. 开箱即用的工程化方案
每个技术模块都提供:
-
📄 标准化文档说明
-
🛠️ 可复现的代码模板
-
📊 性能优化指南
3. 持续迭代的生态
-
🌐 微软GraphRAG、自研可控代理等前沿方案已集成
-
⏩ 每周更新技术方案
💻 本地部署指南(3分钟上手)
环境准备
# 克隆项目
git clone https://github.com/NirDiamant/RAG_Techniques.git
cd RAG_Techniques
# 安装依赖(需Python 3.8+)
pip install -r requirements.txt
🎯 全场景覆盖清单:30+ RAG实现方案
一、基础场景
-
CSV文件问答系统
• 支持结构化数据直接构建知识库 • 示例:销售数据分析、客户信息查询 -
文档级上下文增强
• 自动生成文档摘要作为检索锚点 • 场景:法律条款快速定位 -
动态分块策略
• 支持固定分块/语义分块/命题分块 • 应用:长文本处理(论文/财报分析)
二、查询优化场景
-
HyDE假设性文档生成
• 通过虚拟问题增强检索匹配 • 案例:模糊需求处理("找类似特斯拉的案例") -
子查询分解技术
• 复杂问题拆解为原子问题 • 示例:"比较A和B在X场景的表现" → 分解为A/X、B/X独立检索 -
多语言查询转换
• 自动翻译+本地化术语适配 • 场景:跨国企业多语言知识库
三、上下文处理场景
-
上下文压缩技术
• 关键信息提取(保留率>90%) • 应用:移动端轻量化部署 -
相邻上下文扩展
• 检索核心句+前后关联句 • 案例:法律条款解释性检索 -
多文档融合摘要
• 跨文档信息整合生成 • 场景:行业报告自动生成
四、检索优化场景
-
混合检索系统
◦ 向量搜索+关键词搜索+语义搜索 ◦ 示例:专利检索(精确术语+概念检索) -
智能重排引擎
◦ LLM相关性评分+元数据加权 ◦ 应用:电商商品多维度检索 -
时效性过滤
◦ 按时间维度动态调整权重 ◦ 案例:新闻事件追踪系统
五、企业级场景
-
知识图谱增强
◦ 实体关系网络构建 ◦ 场景:供应链风险识别 -
权限分级检索
◦ 基于RBAC的细粒度控制 ◦ 示例:金融合规文档分级访问 -
审计追踪系统
◦ 检索过程全链路追溯 ◦ 应用:医疗诊断记录审计
六、特殊领域场景
-
多模态检索
◦ 支持文本/图片/PPT混合检索 ◦ 案例:设计素材库("找蓝色科技感PPT模板") -
代码知识库
◦ 支持代码片段语义检索 ◦ 场景:内部代码资产复用 -
表格数据问答
◦ CSV/Excel结构化查询 ◦ 应用:财务报表智能分析
七、高级技术场景
-
自修正RAG
◦ 错误检测→自动重检索→答案修正 ◦ 案例:客服系统容错处理 -
迭代式检索
◦ 多轮检索结果交叉验证 ◦ 应用:学术论文查证系统 -
可控代理系统
◦ 确定性工作流+LLM推理结合 ◦ 场景:金融风险评估流程
八、行业解决方案
-
医疗文献分析
◦ 支持PMID直接检索 ◦ 功能:药物副作用对比分析 -
法律条款检索
◦ 法条版本控制+关联案例推荐 ◦ 示例:新法规影响分析 -
教育知识库
◦ 错题知识点关联检索 ◦ 应用:个性化学习路径推荐
九、前沿实验场景
-
实时网络增强
◦ 本地知识库+搜索引擎混合 ◦ 案例:突发新闻事实核查 -
多Agent协作
◦ 检索Agent+验证Agent+生成Agent协同 ◦ 场景:投研报告自动生成 -
个性化记忆库
◦ 用户历史交互记忆检索 ◦ 应用:智能写作助手风格适配
📌 每个场景都提供:
✅ 独立实现模块
✅ 性能优化指南
✅ 行业最佳实践
✅ 可扩展接口
立即访问GitHub仓库探索完整实现!https://github.com/NirDiamant/RAG_Techniques
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓