Ultra Fast Structure-aware Deep Lane Detection (ECCV2020)
下载tusimple数据集,解压之后的目录结构
处理tusimple数据集json文件生成txt标签文件
python scripts/convert_tusimple.py --root "F:\car\dataset\tusimple\train_set"
运行代码之后生成test.txt和train_gt.txt文件
train_gt.txt文件和test.txt文件内容如下:
开始训练
1. 调整参数
在根目录中添加log_path日志文件夹
在configs/tusimple.py中修改
同时修改数据集位置
2. 训练
如果是单个GPU的话,可以跑下一行代码
python train.py configs/tusimple.py
可以查看data_time iou loss net_time top1 top2 top3 等参数。
如果是多个GPU的话,请运行
sh launch_training.sh
或者
python -m torch.distributed.launch --nproc_per_node = $ NGPUS train.py configs / path_to_your_config
运行命令sh launch_training.sh的时候需要看一下该文件内容
如果是tusimple数据集的话就将上面一行注释掉,运行下面的一行。
2021年3月23号19:30分跑的代码,看看跑多久。
2021年3月24号9点24到实验室,代码跑出来了。
iou在89.3%左右
应该是凌晨3.04跑完的。
我的gpu一共跑了8个多小时。
在log_path文件夹中会生成模型文件
一共72个G。我的电脑可能吃不消,算了…
3. 可视化
tensorboard --logdir log_path --bind_all
运行上面的代码可以执行可视化。
loss值截图
学习率
交并比iou
主要看一下loss值和交并比iou
4.测试
训练的 tusimple跑下面代码
python test.py configs/tusimple.py --test_model path_to_tusimple_18.pth --test_work_dir ./tmp
训练的culane跑下面代码
python test.py configs/culane.py --test_model path_to_culane_18.pth --test_work_dir ./tmp
这边path_to_culane_18.pth是你的训练好的模型路径。
比如我的是log_path下的训练文件下的ep099.pth
开始测试
还没有更新完。