时间序列笔记

参考文章:https://otexts.com/fppcn/holt-winters.html
在这里插入图片描述
时间序列的使用条件:必须能够看出具有周期性
在这里插入图片描述
季节趋势:绝不可以用年作为单位,需要用月份、季度、周做
在这里插入图片描述
循环变动:需要用年作为周期单位
在这里插入图片描述
????
![在这里插入图片描述](https://img-blog.csdnimg.cn/e7456d32b779483286bb538c7fabb511.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2NhcHNuZXZlcg==,size_16,color_FFFFFF,t_70

处理缺失值,疑问:为什么不适用插值法??

在这里插入图片描述
处理完了趋势处理季节性分解,注意这里的平均值的选择

为什么要进行季节性分解?
在这里插入图片描述
时间序列分析主要分为两个模型:指数平滑模型和ARIMA模型
在这里插入图片描述
在这里插入图片描述
例子:挖煤矿 (不含趋势和季节成分,但是因为煤矿的总量是有限的,所以肯定会受到之前的影响,emm这个例子有待商榷)
在这里插入图片描述
简单指数平滑法(simple模型)只能预测一期的数据,因为第二期往后没有实测值,只能用估计值来代替
在这里插入图片描述
例子:某地蒸蒸日上的航空航天
在这里插入图片描述
例子:非理想情况下的生物的繁衍,(人口等…)
在这里插入图片描述
在这里插入图片描述
例子:每年的“棉袄”搜索量会在冬天普遍偏高
注意,这里的m指的是1年/周期长度
在这里插入图片描述
在这里插入图片描述
例子:
在这里插入图片描述

在这里插入图片描述
???

在这里插入图片描述
AR(p)+MA(q)==ARMA(p,q)
为什么我们想要白噪声序列?
答:
在这里插入图片描述
问:为什么我们要进行差分?
答:因为通过差分可以使得序列变得平稳

问:我们如何判断一个序列是否平稳?
答:
在这里插入图片描述
在这里插入图片描述
问:为什么要使用季节差分?
答:可以使序列变得平稳?
在这里插入图片描述

问:为什么要使用AR(p)模型?
答:可以消除自相关的影响

问:我们为什么要求一个序列是平稳的?
答:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
简而言之,就是说他们两个可以互换

在这里插入图片描述

在这里插入图片描述
MA模型一定平稳

AR与MA
参考文章:https://zhuanlan.zhihu.com/p/22248464
在这里插入图片描述
可见:
在这里插入图片描述
在这里插入图片描述
就是说,在绝大多数情况下,我们都可以直接(p个解的模长都小于1)或者间接的(k个解的模长等于1)得到平稳的时间序列

在这里插入图片描述
在这里插入图片描述
尽量使用BIC

在这里插入图片描述
在这里插入图片描述
ARIMA模型使用前的注意事项,以上的均为非季节性的ARIMA模型
在这里插入图片描述
在这里插入图片描述
建模思路
注意:ACF PACF都是用来判断扰动项的各个系数同时为0的

在这里插入图片描述
在这里插入图片描述
注意:此处一定要勾选离群值

在这里插入图片描述

注意:绿色的也需要勾选上

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
将计算的参数带入其中即可获得结果(spss会帮助我们获得结果)
在这里插入图片描述
p值(显著性)>0.05,就代表我们无法拒绝原假设(系数为0),即为白噪声

在这里插入图片描述
在这里插入图片描述
注意:此处存在一些问题,就这种数据由于所给信息的不完全,没有表示出来它是一个在非理想情况下的种族数量增长,需要用以后学到的知识

在这里插入图片描述
在这里插入图片描述
用勾选的来检验是否为白噪声序列

注意:平稳的R方是越大越好~跟R方的意义是类似的。 但平稳的R方适用于原始序列为非平稳序列,经差分或转换后符合平稳化的序列的,评价准度比R方更为准确。 R方适用于原始序列为平稳序列。

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值