参考文章:https://otexts.com/fppcn/holt-winters.html
时间序列的使用条件:必须能够看出具有周期性
季节趋势:绝不可以用年作为单位,需要用月份、季度、周做
循环变动:需要用年作为周期单位
????
处理缺失值,疑问:为什么不适用插值法??
处理完了趋势处理季节性分解,注意这里的平均值的选择
为什么要进行季节性分解?
时间序列分析主要分为两个模型:指数平滑模型和ARIMA模型
例子:挖煤矿 (不含趋势和季节成分,但是因为煤矿的总量是有限的,所以肯定会受到之前的影响,emm这个例子有待商榷)
简单指数平滑法(simple模型)只能预测一期的数据,因为第二期往后没有实测值,只能用估计值来代替
例子:某地蒸蒸日上的航空航天
例子:非理想情况下的生物的繁衍,(人口等…)
例子:每年的“棉袄”搜索量会在冬天普遍偏高
注意,这里的m指的是1年/周期长度
例子:
???
AR(p)+MA(q)==ARMA(p,q)
为什么我们想要白噪声序列?
答:
问:为什么我们要进行差分?
答:因为通过差分可以使得序列变得平稳
问:我们如何判断一个序列是否平稳?
答:
问:为什么要使用季节差分?
答:可以使序列变得平稳?
问:为什么要使用AR(p)模型?
答:可以消除自相关的影响
问:我们为什么要求一个序列是平稳的?
答:
简而言之,就是说他们两个可以互换
MA模型一定平稳
AR与MA
参考文章:https://zhuanlan.zhihu.com/p/22248464
可见:
就是说,在绝大多数情况下,我们都可以直接(p个解的模长都小于1)或者间接的(k个解的模长等于1)得到平稳的时间序列
尽量使用BIC
ARIMA模型使用前的注意事项,以上的均为非季节性的ARIMA模型
建模思路
注意:ACF PACF都是用来判断扰动项的各个系数同时为0的
注意:此处一定要勾选离群值
注意:绿色的也需要勾选上
将计算的参数带入其中即可获得结果(spss会帮助我们获得结果)
p值(显著性)>0.05,就代表我们无法拒绝原假设(系数为0),即为白噪声
注意:此处存在一些问题,就这种数据由于所给信息的不完全,没有表示出来它是一个在非理想情况下的种族数量增长,需要用以后学到的知识
用勾选的来检验是否为白噪声序列
注意:平稳的R方是越大越好~跟R方的意义是类似的。 但平稳的R方适用于原始序列为非平稳序列,经差分或转换后符合平稳化的序列的,评价准度比R方更为准确。 R方适用于原始序列为平稳序列。