RL - 强化学习 Decaying Epsilon Greedy 算法解决多臂老虎机问题

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/130945234

DEG

GitHub 源码: https://github.com/SpikeKing/Reinforcement-Learning-Algorithm

Decaying Epsilon Greedy 算法是一种强化学习中的探索策略,可以平衡开发和探索之间的矛盾。基本思想是,以一个递减的概率 epsilon 随机选择一个动作,以 1-epsilon 的概率选择当前最优的动作。随着学习的进行,epsilon 逐渐减小,从而增加利用已知信息的机会,减少随机探索的次数。这种算法可以保证每个动作都有一定的概率被访问到,同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值