LLM - Transformer 的 多头自注意力(MHSA) 理解与源码

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/140281680

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


MHSA

在 Transformer 中,多头自注意力机制 (MHSA, Multi-Head Self-Attention) 是核心创新之一,极大地提升模型处理序列数据的能力。

**自注意力机制 (Self-Attention) **

自注意力机制的核心思想是,在序列中的每个元素都与其他所有元素相关,这种关系是通过注意力权重来表示。具体来说,自注意力机制通过以下步骤计算:

  1. 计算 Query、Key 和 Value 矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值