YOLOv8添加注意力机制方法【MHSA、ShuffleAttention、SiAM】

本文介绍了如何在YOLOv8模型中添加MHSA注意力机制,包括文件结构的调整、模型配置的修改以及ShuffleAttention和SiAM机制的引入。着重说明了不同注意力机制的导入方式和参数处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8添加注意力机制方法

注意力机制示例1:MHSA

1、 注意力机制文件放在nn文件夹下
2、 task.py文件导入注意力机制文件
在这里插入图片描述
3、 task.py中parse_model函数添加elif语句:
在这里插入图片描述
在这里插入图片描述
注意是in
4、 改模型配置文件

原模型(左图)和添加注意力机制后的(右图)
在这里插入图片描述
这里的参数要看MHSA的参数要求
该注意力机制属于有参数的

注意力机制示例2:ShuffleAttention

1、 nn文件夹下添加.py文件,task.py文件导入ShuffleAttention
2、 parse_model函数添加elif语句,由于该注意力机制也接收通道数为参数,所以方法和MHSA相同࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里守约

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值