异常检测中常用的光流法对比(Horn-Schunck / Lucas–Kanade / Farneback)

本文对比了三种光流法在异常检测中的表现,包括Horn-Schunck、Lucas-Kanade和Farneback。实验在UCF web、UMN和UCSD异常数据集上进行,结果显示Farneback光流法在Variance Manitude参数上对异常场景更敏感,且在MSE指标上优于其他两种算法,适用于人群异常检测。
摘要由CSDN通过智能技术生成

三种光流法的OpenCV-API

(一) Horn-Schunck光流法

CalcOpticalFlowHS

Horn–Schunck光流算法用一种全局方法估计图像的稠密光流场(即对图像中的每个像素计算光流)

算法原理参考论文:Determining Optical Flow

(二) Lucas-Kanade光流法

calcOpticalFlowPyrLK

Lucas-Kanada最初于1981年提出,该算法假设在一个小的空间邻域内运动矢量保持恒定,使用加权最小二乘法估计光流。由于该算法应用于输入图像的一组点上时比较方便,因此被广泛应用于稀疏光流场。

算法原理参考论文:Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm

(三) Farneback光流法

calcOpticalFlowFarneback

Farneback是一种基于梯度的方法,假设图像梯度恒定且假设局部光流恒定,计算出图像上所有像素点的光流。

算法原理参考论文:Polynomial Expansion for Orientation and Motion Estimation

三种光流法的实验效果对比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值