基于CNN-LSTM模型: 用EEG自动诊断精神分裂症

精神分裂症(SZ)会阻碍大脑发育,严重损害思想、情感表达以及对现实的感知。大多数研究表明大脑结构和功能异常会产生很大影响,不过目前导致SZ的原因仍不明确。据世界卫生组织报告,全世界近2100万人患有这种脑部疾病,开始受该疾病影响的平均年龄是青年时期,男性18岁,女性25岁,在男性中更为普遍。

SZ自动诊断方法中,神经影像技术具有很大潜力,其中结构性磁共振成像(sMRI)和弥散张量成像提供有关大脑结构的信息,而脑电图(EEG)、脑磁图、功能性MRI、功能性近红外光谱成像提供有关大脑功能的信息。功能性神经影像学方法中,EEG较实用、便宜,以高时间分辨率和适当的空间分辨率记录了大脑电活动,还有多个通道可以长时间记录信号。

应用人工智能(AI)方法的EEG-SZ自动诊断有传统机器学习(ML)和深度学习(DL)包含:预处理、特征提取和选择、特征分类,其中特征提取是最重要的部分。传统机器学习中,EEG信号中提取的特征主要分为:1.时域、2.频域、3.时频、4.非线性。Siuly等人在在预处理中使用经验模态分解(EMD),从EMD子带中提取各种统计特征,使用集成袋装树法进行分类。Jahmunah分别在特征提取、分类中使用非线性特征和具有径向基函数核的支持向量机(SVM)。Devia提供了基于事件相关场特征的SZ诊断方法,提取了极端随机树 (ERT) 特征,在分类中使用了线性判别分析。Prabhakar提取稳态视觉诱发电位的统计特征,通过k近邻(KNN)进行分类。Shim提供了诊断SZ的新方法,在特征提取中使用传感器级和源级特征,使用Fisher分数进行特征选择,最终使用SVM方法取得理想结果。

传统的机器学习中,为SZ诊断选择合适的特征提取算法是一项艰巨的任务,需要大量信号处理和人工智能领域的知识。为克服这个问题,近年提出基于EEG与DL的方法,在没有深层的情况下提取特征。Shalbaf等人通过EEG信号建立SZ诊断的迁移学习模型,使用ResNet-18模型提取特征,SVM用于分类。一些学者基于EEG研究了卷积网络(CNN)模型在SZ诊断中的作用。CNN-RNN(递归神经网络)模型是重要的DL网络,可通过EEG信号诊断各种脑部疾病,CNN-LSTM(长短期记忆)模型已用于SZ诊断并得到理想结果。

本文将使用多种DL和传统ML方法研究EEG信号的SZ诊断,方法小结见图1。研究使用了波兰华沙精神病学和神经病学研究所的数据集,预处理对EEG进行z分数标准化和L2正则,输入的传统ML模型包括SVM、KNN、决策树(DT)、朴素贝叶斯、随机森林(RF)、ERT、袋装(bagging)法,DL网络包括各种一维(1D)-CNN、LSTM、1D-CNN-LSTM模型,用于执行特征提取与分类。研究将观察九种基于LSTM、1D-CNN、1D-CNN-LSTM的DL方法。本文还概述了几种用于比较的基线处理方法和用于分析、验证模型的统计指标。 本文发表在Frontiers in Neuroinformatics杂志。

图1.研究将观察的模型

2 材料与方法

2.1 数据集

数据集包括14名女性和男性(27.9至28.3岁)的EEG信号,以及14名与患者年龄、性别相匹配的普通人的信号,每次记录15分钟闭眼时的信号。使用标准10-20系统,以250Hz的采样频率进行记录,使用电极包括:Fp1、Fp2、F7、F3、Fz、F4、F8、T3、C3、Cz、C4、T4、T5、P3、Pz、P4、T6、O1和O2。SZ情况和正常情况的EEG示例如图2、图3所示。

图2.SZ患者的EEG案例

图3.普通人的EEG案例

2.2.预处理

19个通道的EEG分为无重叠的25s的帧,每个帧包括6250个点。每个帧都通过Z分数和L2正则处理,这有助于提高传统ML和DL模型的准确性和性能。

2.3.传统机器学习方法

研究观察的传统ML方法包括SVM、KNN、DT、朴素贝叶斯 、RF、ERT和袋装法。

(1)支持向量机
支持向量机(SVM)在高维或无限维空间中构造一个/组超平面(与类的所有数据点距离最大-功能边距),边距越大,分类器的泛化误差越低。

(2)k近邻
k近邻(KNN)给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某类,就把该输入实例分类到这个类中。

(3)决策树
决策树(DTs)是监督学习算法,每个样本都有一组属性和一个分类结果,通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确分类。

(4)朴素贝叶斯
朴素贝叶斯是监督学习算法,基于贝叶斯定理,假设特征条件之间相互独立,通过已给定的训练集学习从输入到输出的联合概率分布,再基于学习到的模型求出使后验概率最大的输出。

(5)随机森林
随机森林(RF)是袋装法的延展,以DT(决策树)为基学习器,在袋装法的基础上加入随机属性的选择。在基DT的结点可选择输入特征的子集,这使得集成中的每个DT更加不同。

(6)ERT
极端随机树(ERT)与RF一样是几个DT的集成,但ERT在原始训练集上拟合DT,并在选定划分特征后随机选择一个特征值来划分DT。

(7)袋装法

袋装法(Bagging)是集成算法,采用有放回的抽样方法生成训练数据。袋装法将来自多个基学习器的预测值结合,投票或平均形成最终预测。

2.5.深度学习模型

CNN多用于医学信号处理,在时序信号处理上的表现优异。CNN模型具有卷积、池化、全连接(FC)层。在1D-CNN模型中,信号的时间可以被视为空间维度,如2D图像的高/宽。1D-CNN模型被认为是时序处理中RNN模型的重要竞争对手。其计算成本比RNN模型更低。本节提供了三种基于1D-CNN的模型。

(1)1D-CNN第一版
如表1,该模型包括九个不同的层,卷积层有64个3×3维度的过滤器,各种激活函数如 ReLU、Leaky ReLU、seLU用于卷积层,最大池化层用于降低维度,不同速率的dropout层用于防止过拟合,flatten层用于将矩阵转换为向量,密集层用于分类,密集层使用sigmoid函数,用于二进制分类。

(2)1D-CNN第二版
如表2,该模型包括三个卷积层,核大小为2,有四个不同速率的dropout层、一个flatten层、两个dense层。第一个密集层使用ReLU函数,最后一个密集层使用sigmoid函数。

(3)1D-CNN第三版

如表3,该由两个卷积层组成,有一个最大池化层,核大小为2,有不同速率的dropout层,有一个flatten层、两个密集层,密集层的激活函数分别为ReLU和sigmoid型。

表1.1D-CNN第一版

表2.1D-CNN第二版

表3.1D-CNN第三版

2.6. LSTM 模型

循环神经网络(RNN)多用于语音识别、自然语言处理和生物医学信号处理。CNN模型属于前馈神经网络,而RNN加入了反馈层,在时间方向上将前一时刻隐藏层的激活值反馈给下一时刻,与当前时刻的信号输入共同作为当前时刻的输入,共同训练每级的网络,从而使网络具有记忆功能。简单RNN、LSTM和GRU(门控循环单元)是三种重要的RNN模型。这里观察LSTM,包含两个版本,构架信息见表4与表5。第二版在第一版的基础上加入了一个核大小为50的LSTM层,用于比较加入LSTM层对EEG-SZ诊断的影响。

表4.LSTM第一版

表5.LSTM第二版

2.7.CNN-LSTM 模型

CNN-RNN模型中,卷积层用于提取特征并找到局部模式,其输出将应用到RNN层。与RNN相比,卷积层可以更好地提取EEG信号的局部和空间模式,而在RNN中添加卷积层也可以更准确地检查数据。本文观察三个版本的CNN-LSTM,构架信息分别见表6、表7与图4。两个版本的前十层相同,第二版多加入一个密集层和一个dropout层。

表6.CNN-LSTM第一版

表7.CNN-LSTM第二版

图4.CNN-LSTM第二版图示

3.结果

七种传统机器学习模型的结果见表8,机器学习使用scikit-learn库,在2.80GHz的Intel (R) Core (TM) i7-4810MQ CPU中进行。我们还对比了z分数标准化后EEG的机器学习结果。如表8,标准化后的EEG信号使用袋装法获得最高准确度。图5显示了标准化EEG的ML分类算法的ROC曲线。左图为z分数标准化的结果,右图为z分数标准化+L2正则的结果。

表8.传统机器学习各模型的表现

图5.传统机器学习各模型ROC曲线

三个CNN、两个LSTM和两个CNN-LSTM网络的表现使用Keras库分析,在GPU NVidia RTX2080 Ti中进行。最终选择的batch大小和网络超参数值见表9。使用不同激活函数(Leaky ReLU、seLU、ReLU),以及z分数、z分数+L2处理的结果见表10-12。为避免过拟合,我们应用两种正则方法,即Dropout和权重正则化。每个卷积层和LSTM层之后使用的dropout值为0.5,密集层之后使用的dropout值为0.25。架构的所有卷积层、LSTM层和密集层都使用权重正则化,用0.01的L2正则化。使用Leaky ReLU函数时,信号z分数+L2处理后输入CNN-LSTM第二版的准确率最高;使用seLU函数时,z分数标准化的LSTM第二版准确率最高;使用ReLU函数时,信号z分数+L2处理后输入CNN-LSTM第二版的准确率最高。表9.深度学习网络的参数值选择

表10.使用Leaky ReLU函数的深度学习模型性能


表11.使用seLU函数的深度学习模型性能


表12.使用ReLU函数的深度学习模型性能

使用ReLU激活函数的DL模型的ROC曲线见图6,左侧是使用z分数+L2处理的结果,右侧是使用z分数标准化的结果。使用ReLU函数,z分数标准化后的CNN-LSTM学习曲线见图7,z分数+L2处理后的CNN-LSTM学习曲线见图8。

图6.使用ReLU激活函数的DL模型ROC曲线

图7.使用ReLU函数的z分数标准化后CNN-LSTM学习曲线

图8.使用ReLU函数的z分数+L2处理后CNN-LSTM学习曲线

本文研究的所有DL和传统ML方法中,13层CNN-LSTM模型具有最高的准确性和效率。本研究首次研究了该模型的层数、激活函数的选择,并同时使用z分数和L2正则处理信号。图9显示了z分数标准化后使用不同激活函数的DL模型的性能。图10显示了z分数+L2处理后使用不同激活函数的DL模型的性能。与其他方法相比,z分数+L2正则处理后CNN-LSTM第二版的表现最佳。

图9.z分数标准化后不同激活函数的DL模型性能

图10.z分数+L2处理后不同激活函数的DL模型性能

4.研究限制

1.用于SZ诊断的EEG数据集包含病例有限,这使得通过EEG信号和DL模型进行SZ诊断具有挑战性。

2.本研究中的数据集不用于确定疾病的严重程度,仅用于诊断疾病,且不适合预后或早期诊断。

3.分类器没有单独设计和比较不同年龄和性别。

4.分类器属于二元分类,未来可以通过添加相似症状的脑疾病类别来进行多元分类。

5.结论、讨论、未来工作

领域内针对SZ诊断提出了各种基于EEG信号的人工智能诊断方法,包括传统ML以及DL模型。本研究的数据集由14名正常人和14名SZ患者的EEG数据组成,采样频率为250Hz,预处理步骤中将脑电信号分为25秒的帧,之后通过z分数或z分数-L2进行EEG信号处理,每一帧EEG信号大小为19×6250。

本文观察的传统ML方法包括:SVM、KNN、DT、朴素贝叶斯、RF、ERT和袋装法z分数标准化EEG信号输入袋装法模型获得最高准确度,为%81.22±1.74。

本文提出的DL方法包括三个1D-CNN、两个LSTM、两个1D-CNN-LSTM网络,使用激活函数Leaky ReLU、seLU或ReLU实现。13层、z分数+L2正则处理、使用ReLU激活函数的1D-CNN-LSTM可以获得%99.25 ± 0.25的最高准确度。该模型在本研究中首次提出,表13显示了这个1D-CNN-LSTM模型与先前EEG-SZ诊断研究提出模型的对比。如表13所示,本研究提出的模型可以获得更高的准确性。该模型可以在专用软硬件平台上实现,通过EEG信号进行快速SZ诊断,可作为医院的辅助诊断方法。

表13.本研究1D-CNN-LSTM模型与其他EEG -SZ诊断模型的对比

EEG-SZ诊断的未来工作包含:

1.将CNN-AE模型用于EEG-SZ诊断。先前研究表明,CNN-AE模型基于EEG信号诊断神经疾病非常有效。

2.为不同年龄、性别群体提供基于DL的分类模型。

3.结合传统ML和DL模型进行SZ诊断。先从EEG信号中提取不同的非线性特征,然后通过DL模型从原始EEG中提取特征,最终将人工和DL特征结合起来进行分类。

4.基于深度学习的图模型(graph model)是诊断脑部疾病的新领域之一,未来工作可以使用基于DL的图模型进行EEG-SZ诊断。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值