在过去的二十年中,大脑连接组学已经发展成为神经科学的一个主要概念。然而,目前关于大脑连接及其如何支撑大脑功能的观点主要依赖于功能磁共振成像(MRI)。分子成像提供了磁共振成像和电生理技术无法获得的独特信息。因此,正电子发射断层成像(PET)已成功应用于测量正常和病理认知中的神经活动、神经传递和蛋白质病变。在这里,我们从有效性、可重复性和分辨率的角度将分子成像定位在大脑连接框架内。我们鼓励神经科学界采取综合方法,利用磁共振成像、电生理技术和分子成像来帮助我们理解大脑连接体。本文发表在Trends in Cognitive Sciences杂志。
1. 大脑连接成像
在过去的20年里,大脑作为一个网络的思想逐渐受到关注,并已发展成为神经科学的一个主要概念。根据这一观点,一般的大脑功能,尤其是认知功能,依赖于在大规模网络中运行的分布式大脑区域之间的相互作用。因此,这些网络的功能障碍,或大脑断连,已在许多认知障碍中观察到。使用电生理和神经成像技术可以在宏观尺度上捕捉大脑网络。事实上,第一个功能连接的正式框架是基于PET研究提出的。后来,这些技术扩展到功能MRI (fMRI)、脑磁图(MEG)、以及最近的功能近红外(fNIRS)。
分子成像的方法是基于放射性核素的检测。所建立的放射性示踪剂与分子目标在纳米到皮摩尔水平具有高亲和力和选择性。在广义上,术语分子连通性是指分子成像的区域测量之间的统计依赖关系。虽然分子成像包括几种技术,如PET和单光子发射断层扫描,以及体外放射自显影,但我们在这里明确地关注作为研究环境中最受欢迎的体内技术的PET。在下面,分子成像和PET被用作同义词。
目前,血氧水平依赖(BOLD)功能磁共振成像是目前最流行的研究功能连通性的方法。与PET相比,fMRI应用广泛,价格便宜,具有更高的时间分辨率,并且没有电离辐射暴露。尽管PET对大脑连接的研究在绝对值上正在增加,但其比例仍然非常有限。因此,目前关于大脑连接和网络如何支撑认知功能的观点不成比例地依赖于fMRI的血流动力学信号。由于大脑活动产生于生化信号和电信号的复杂相互作用,一种方法无法完全表征区域间交流的多样性。因此,对大脑连接体的多模态、综合视角的需求日益增加。分子成像提供了普通磁共振成像技术和电生理工具无法获得的独特信息。
2. 分子连通性的价值
我们认为PET从有效性、可重复性和分辨率的角度来看是大脑连接研究的一种有价值的成像工具。根据定义,有效性,也称为准确性,表明在其他过程和噪声中,该方法的测量与真正的生物学过程有多接近。再现性,也称为可靠性或精密度,表示该方法的重复测量彼此之间的接近程度。在没有基本事实参考的情况下,对连通性测量的可重复性的了解不能被高估。可复制性是再现性的一种特殊情况,指的是从另一个数据集获得相同结果的能力。空间分辨率和时间分辨率是该方法所能分辨的最小目标的度量。这些特征对于理解不同形式的大脑连接运作时的推理规模是很重要的。
下面,我们将重点介绍PET,其中18F-FDG是最受欢迎和最成熟的放射性示踪剂。在适当的情况下,我们比较了基于18F-FDG PET的分子连接和基于fMRI的功能连接,后者是连接组学领域最流行的神经成像工具。如果没有其他说明,分子连通性的估计是基于静态PET图像的被试间建模。
在受试者间估计的情况下,连通性是通过跨受试者测量的共变来估计的,其中每个受试者只有一张图像可用。虽然时间通常被用于从基于核磁共振成像和电生理数据推断大脑连通性,但它不是强制性的。首先,时间相关性的存在并不能保证两个区域是相连的,因为时间依赖可能是直接的、间接的或虚假的。其次,评估功能连通性并不需要完整的时间序列。第三,与fMRI功能连通性一样,通过白质纤维的结构连通性是区域FDG摄取的受试者间协方差的相关基底。最后,受试者间静息状态18F-FDG PET和传统BOLD fMRI数据的连通性模式显示了相似的特征,如已知RSNs和更强的同位与异位半球间连通性。一些统计方法已成功应用于从被试间PET数据中估计分子连通性,类似于sMRI和fMRI数据。这背后的假设是,受试者之间信号强度共变的区域属于同一个网络。值得注意的是,fMRI时间序列和受试者序列产生了相似的功能连通性空间模式。这种方法也与元分析连接映射有相似之处。
在受试者内估计的情况下,通过动态PET估计连通性,其时间分辨率接近fMRI,即所谓的功能性PET。这里的连通性是通过测量值随时间的共变来估计的。功能性PET研究在同一成像过程中持续注入放射性示踪剂。因此,静息状态18F-FDG PET具有1分钟帧持续时间产生的组级网络。然而,功能性18F-FDG PET产生了一些在BOLD数据中不明显的独特网络。最近,分子连通性的采样率估计为16s。功能性PET的主要挑战是与静态PET相比固有的低信噪比,这阻碍了在单被试级别上有意义的连通性估计。这一问题可以通过更长的扫描时间、时空滤波等方法来部分解决。
2.1 有效性
神经通信也具有生化成分:突触传递信息,神经元不断地将电信号转换为化学信号,然后将化学信号再转换为电信号。突触后机制检测到的生化递质在突触后细胞中诱导电信号的转导,后者随后诱导在突触前末端再次释放生化递质。由于记录电信号或其代理一直被认为是研究大脑区域之间功能联系的合理策略,因此化学信号或其代理应该代表一种替代的、同样合理的方法来观察神经元通信模式。事实上,由于化学突触代表了人脑信号转导的主要模式,生物化学信号比电信号更准确地反映神经通信。相比之下,功能磁共振成像(fMRI)通过血管中供给特定大脑区域的氧气量来测量神经活动。血流动力学fMRI反应的神经血管耦合是基于局部脑血流量、容量和脑氧代谢率之间复杂的相互作用。因此,18F-FDG PET和BOLD fMRI记录了部分不同的并行过程。尽管BOLD信号依赖于脑血流量(CBF)和代谢反应,但由于尚不清楚的原因,神经活动在葡萄糖代谢中引起的反应比氧气消耗更强(18F-FDG PET显示的就是葡萄糖代谢)。两种信号之间的差异也反映在大脑连通性中,其中由受试者间18F-FDG PET和传统BOLD fMRI数据估计的静息态网络(RNS)仅显示中等空间相似性。最近的一项fMRI连接模拟研究发现,以脑神经血管疾病为特征的异常连接不仅反映了异常的神经活动,还反映了脑血管和血流动力学/代谢病理生理学。因此,18F-FDG PET以更直接的方式接近神经活动。
2.2 再现性
虽然用扩散加权MRI (dMRI)估计结构连通性的目的是估计实际的解剖连通性,但基于统计依赖性的其他假定脑连通性指标的神经基础是未知的。在这种情况下,我们提出了大脑连通性的术语“代理”估计。由于缺乏黄金标准或基本事实参考,这种代理估计的可重复性具有至关重要的价值。这背后的基本原理是,可重复的测量更有可能反映一个真实的信号,而不是一个虚假的信号。事实上,测试-再测试重现性是任何方法泛化的“起始”条件。区域葡萄糖消耗的PET测量显示具有良好的测试-再测试重现性。fMRI连通性的重测重现性较差。在18F-FDG PET和BOLD fMRI网络之间直接比较的数据仍然缺失。
结果的可复制性与感兴趣的认知变量相关的神经成像数据的方差量有关。较高的方差浓度可以用较少的独立神经成像变量(如主成分或独立成分)构建此类模式。在纯噪声的极端情况下(即数据中没有任何空间相关活动),必要成分的数量将接近数据秩,并且,与普通回归类似,将出现过度拟合。在同一组参与者同时获得18F-FDG PET和fMRI数据的真实场景中,我们发现18F-FDG PET数据的方差浓度明显更高。相对于fMRI,静态18F-FDG PET数据明显遭受较少的统计噪声。
2.3 空间和时间分辨率
一般来说,大脑的分割,特别是大脑连接的映射,取决于所获取数据的空间和时间分辨率。分子成像与其他神经成像和电生理工具相比如何?空间分辨率既取决于技术本身的特性,也取决于数据的后处理。假设临床PET扫描仪的典型分辨率为4.3 mm(图1A),平均神经元密度为30000个神经元/mm3,PET分辨率的最小空间“单位”对应于23852100个神经元(图1B)。这些神经元仅比传统BOLD功能磁共振成像中最小空间单元内的神经元多三倍。然而,每种方法的空间分辨率在整个大脑中是不同的:通过应用衰减校正来补偿大脑深部结构周围的信号退化,PET可以准确地解析整个大脑的信号。大多数其他神经成像和神经生理学技术并非如此(图1C和D)。目前,包括PET在内的现代人类电生理学和功能性神经成像技术距离单个神经元有5-8个数量级的距离。此外,BOLD fMRI和18F-FDG PET的空间分辨率固有地受到其空间特异性的限制。

图1 常见神经生理学技术的时空分辨率。
(A)模拟一个样本随机对象如何被每种方法解析。sMRI、dMRI和fMRI的空间分辨率定义为体素大小,PET和fNIRS的空间分辨率定义为半峰全宽(FWHM)。
(B)每种方法可以解析的最小空间单位—表示为神经元的数量,假设是30000神经元/mm3。
(C)每种方法绘制的大脑总体比例的表示。
(D)大脑中不同部位的信号被准确测量(粉红色一侧,眼睛图标),未被测量(灰色一侧,交叉的眼睛图标),或被测量但分辨率较低和/或敏感性伪影(灰色一侧,眼镜图标)。
(E)每种方法的平均采样率,基于调整后的对数刻度,以fMRI采样率为2.5s为中心。给出了静态PET和功能PET两种情况下PET的时间尺度。
时间分辨率还依赖于技术本身的特性、采集参数和用户应用的后处理选项,如重建参数、时间滤波和平滑。在18F-FDG PET领域,迄今为止已经使用了几种获取和重建方法,这些方法提供了分子连通性的估计,采样速率为分钟到秒。显然,就动作电位而言,即使是PET研究中最高的采样率也与神经活动的时间尺度相差几个数量级, fMRI也是如此(图1E)。值得注意的是,这些技术的时间分辨率固有地受到潜在传递函数的限制,即灌注PET的神经血管耦合、fMRI和fNIRS的血流动力学响应以及18F-FDG PET的神经代谢耦合。这些函数动态缓慢,在数十秒内展开。因此,在固有的相对较慢的过程上无限地增加时间分辨率不一定会得到关于潜在神经活动的额外信息。
尽管神经活动的空间和时间尺度与神经成像或电生理学的采样测量之间存在差距,但功能连通性似乎分布在不同的空间尺度和时间频率上,因此没有尺度本身是没有信息的。事实上,功能连接在不同的空间和时间尺度上传递不同的信息。在后一种情况下,较长的时间尺度捕捉到连接组内固定的和较低动态的相互作用,例如由营养效应、遗传和环境决定的,而较短的时间尺度更能反映动态的、瞬时的神经活动。因此,在较慢的时间尺度上(分钟),功能耦合被证明是底层结构联系的良好指标;在中间时间尺度(秒,更接近fMRI的采样率),时间上的相关波动在各个区域出现,这些波动以一种揭示反相关簇存在的方式进行协调;在快速的时间尺度(毫秒),观察到区域之间的间歇同步和去同步,产生了大量的亚稳态。同样,在不同时间尺度(16秒vs 60分钟)获得的PET测量提供了不同的分子连通性模式。因此,即使在相同的成像方法中,不同的时间尺度也能捕捉到区域间通信的不同方面。虽然尚不清楚不同时间尺度上的事件如何相互作用(或它们是否独立),以及较低时间尺度上平均“汇集”活动的共变是否会影响较快时间尺度上动态相关性的出现,但不同的方法似乎同样有意义,并允许访问大脑组织和认知的不同、互补的方面。
3. 分子连接的形式
大脑连通性可以从PET数据中以不同的方式估计。尽管一些PET研究从时间序列中估计了大脑连通性,无论是以多次扫描或时间框架的形式,但大多数研究依赖于所谓的受试者序列,其中每个受试者都有一张图像可供分析。前面已经解释了被试间和被试内分子连通性估计的基本原理。对于生物靶点,分子成像能够针对活人脑中的各种过程,如神经活动、神经传递和蛋白质病,从而得到不同形式的分子连接。图2总结了使用分子成像和其他神经生理学技术已经和可能接近的神经生物学靶点。在本节中,我们将讨论不同形式的分子连接的神经生物学基础。

图2 常用神经生理学技术的目标和连通性估计。
每种神经生理学技术测量的主要神经生物学目标的示意图,以及它们在脑实质或血管中的定位。还显示了仅在病理条件下发现的神经生物学靶标(右上方红色图)。为每个神经生物学目标获得的连通性估计类型被记录下来,并为每种技术进行了彩色编码。如果至少有一项研究发表在同行评审的科学期刊上,则认为连通性估计是可行的,如果没有研究,但有适当的正电子发射断层扫描(PET)放射性示踪剂可用,则认为是可行的;如果一种合适的PET放射性示踪剂仍在开发中,则需要放射性药物的进步。
3.1 神经功能
葡萄糖是神经元必需的能量底物,而突触则是能量的主要消耗者。18F-FDG通过葡萄糖转运体从血液转移到大脑,经己糖激酶代谢为FDG-6-磷酸盐,然后被困在细胞中。值得注意的是,己糖激酶是糖酵解中的“看门人”,并调节所有后续反应发生的速率。因此,18F-FDG在大脑中有时间依赖性的积累,与葡萄糖代谢成正比。葡萄糖代谢直接耦合兴奋性神经活动,通过谷氨酸盐的释放和运输介导。基于18F-FDG PET数据的神经活动网络,即所谓的代谢连接,与正常和病理认知有关。
大脑的高能量需求是通过持续的CBF来维持的,这种CBF是通过神经元活动、CBF和代谢之间的耦合来促进的。调控CBF -代谢耦合的机制和介质已被广泛研究。神经元激活后,CBF需求增加,为脑实质提供葡萄糖和氧气,从而允许持续的神经元激活。因此CBF与神经活动是间接耦合的。在过去,以15O-H2O作为放射性示踪剂的CBF PET研究对建立作为神经科学学科的宏观大脑连接做出了重要贡献。
3.2 神经传递
神经传递是人脑信号传播的主干,是所有认知过程的基础。它可以用PET放射性示踪剂来研究,PET示踪剂靶向突触功能的组成部分,如受体、囊泡、转运蛋白或酶活性底物。主要神经传递系统的神经元投射与结构和功能连接很好地吻合。因此,绘制放射性示踪剂的全脑分布图可能间接提供给定神经传递系统内连通性的信息。作为一个实际的例子,考虑血清素能传递的主要成分—血清素转运体和血清素1A自身受体—分别调节血清素的再摄取和释放。中缝核中5 -羟色胺转运体的增加,导致突触前末端5 -羟色胺可用性降低,导致5 -羟色胺1A自身受体活性降低,从而增加中缝核对其投射的放电速率。因此,在中缝投影处有更多的血清素可用,这反过来又导致血清素转运体在投射点的表达增加,血清素1A自身受体的表达减少。因此,5 -羟色胺转运蛋白的表达以及5 -羟色胺1A自身受体的表达在不同区域相互依赖(连接)。因此,纹状体和纹外多巴胺能D2受体之间的空间相关性模式被发现与已知的多巴胺能系统的生化结构一致。进一步的研究已经将分子连通性的研究扩展到与认知和情绪有关的血清素能系统和μ-opioid系统。最近,使用11C-UCB-J示踪剂在PET数据中也发现了可复制的突触密度网络。
3.3 蛋白疾病
许多神经退行性疾病与异常错误折叠蛋白的聚集有关,如额颞叶痴呆中的TAR DNA结合蛋白,帕金森病中的α-突触核蛋白,阿尔茨海默病中的淀粉样蛋白-β (Aβ)和tau。越来越多的证据表明,蛋白质病可能通过细胞间传递-突触传播。例如,将tau种子注射到小鼠大脑中可诱导局部tau过度磷酸化,并通过神经元内吞作用、扩增、转运和进一步释放新的tau种子扩散到相关区域。因此,多模态成像研究报告了tau蛋白在人体中沿解剖连接的扩散。如果病理蛋白的传播是通过连接的大脑区域发生的,那么用分子连通性绘制错误折叠蛋白的图谱可能会从局部易损性和蛋白质传播途径方面提供对疾病进展的见解。在前一种情况下,分子连通性允许识别具有病理“连接”数量增加的区域。对于蛋白质的传播,分子的连通性可以识别蛋白质的传播路径,其中具有共变病理量的区域可以被认为是相同病理路径上的站点。
4. 连接体映射
从一般的神经生理学数据,特别是PET数据中估计的连通性如何有助于我们对大脑组织的理解?我们在这里介绍连接体映射的概念。这一概念可以被视为可互操作地图集的特殊情况,专门用于大脑连接。把大脑连接体看作是一种元状态。尽管有一个由主要神经纤维组成的结构核心,连接体的单位在空间和时间上在功能水平上不断地相互作用。结构骨架可以用dMRI捕获,而功能连接体可以用MRI技术、电生理工具和分子成像捕获。大部分健康的人都有一部分大脑连接,包括结构和功能。然而,功能连通性被认为比结构连通性在个体之间的差异更大。所谓的连接体的不变部分是给定物的特征,可以称为映射。不变部分,如使用fMRI所概述的,可以被称为(人类)连接组的fMRI图。每种方法都被假定为勾勒出大脑连接组的一个特定方面(图3A)。为此,我们认为组级数据,无论是被试间还是被试内,都适合于描述连接体的不变的、基于群体的部分(图3A)。在我们看来,不同图谱的整合(图3B)是增进我们对大脑组织理解的方法。

图3 用常用神经生理学技术估计脑连接体及其整合场景。
(A)除EEG和MEG连接体在单个受试者水平上估计外,所有连接体都是指群体水平图。所有连接体均基于健康受试者的数据。在每个连接组中,节点对应于大脑区域,除了fNIRS连接组节点对应于头皮上的通道。PET病理渲染代表了任何病理目标的原型连接组的轮廓。
(B)跨连接体整合的场景。分子连通性的整合可以增加连通性估计的稳健性(左),指定给定连接(中)背后的生化决定因素,或阐明方向性,最终,沿着每个连接施加的作用类型(红、蓝箭头)(右)。
大脑连接组被认为为认知提供了支架。到目前为止,MRI和电生理技术已被广泛用于捕捉大脑的结构和功能连通性。将分子连通性整合到大脑连通性的广泛框架中,将在总体上改善连接组的特征,特别是作为认知的基础。根据研究目标,可以通过几种通用方式实现集成(图3B)。
(i)稳定性:通过PET测量神经活动,增加关于结构和功能连通性估计的确定性的信息。也就是说,在给定的时间尺度上,一致的估计更有可能是真实的,而不是虚假的。
(ii)生化底物:通过对特定类别的受体和转运体的PET测量,在估计结构和功能连通性后,添加有关神经递质系统的信息。
(iii)因果关系:通过PET测量兴奋性和抑制性输入、突触前和突触后信号或区域梯度,增加有关结构和功能连接方向的信息。
从方法上讲,可以使用如下所示的不同方法来实现来自不同技术的连接信息的集成。(i)联合或并行独立成分分析,以量化通过不同技术估计的大脑网络的相关性(联系)。(ii)多层方法,量化大脑区域和不同技术(层)之间的相关性。(iii)多因素大脑模型,以模拟不同技术(因素)在生成特定大脑状态中的贡献。
5. 展望
虽然分子连通性的基础已经就位,但仍有一些方法和概念上的问题有待解决。我们将这条路径细分为两个主要的时间阶段—验证阶段和应用阶段。
首先,验证:(i)对指定分子连通性结果的命名法达成共识,并避免在文献中使用不一致的术语。(ii)定义最佳实践方法,包括在不同实验条件下(样本量、样本异质性、扫描仪类型、采集、重建和处理流程)对分子连通性估计的再现性进行系统研究,与更成熟的基于MRI的连通性估计相比,并通过模拟实验研究了区域强度的变化对分子连通性模式的影响。
第二,应用:(i)基于已建立的PET放射性示踪剂数据开发人类连接体分子成像图谱;(ii)将分子连通性整合到因果模型框架中,以实现关于大脑功能的因果推论;(iii)在个体水平上推导和验证分子连通性指数,用于已经开始的临床应用,但需要进一步开发和复制。
最后也是最重要的是,包括数据和代码共享在内的开放科学实践,有望促使分子神经成像社区之外的神经科学家接近分子连通性领域。为了促进这一点,我们总结了用于PET数据连接性分析以及易于访问的PET数据集的代码和工具箱。这些数据集包括31000多名人类受试者的PET数据。这些名单将很快在http://www.molecularconnectivity.com上发布。我们鼓励研究人员更新这些数据库。
6. 总结
鉴于化学突触是人脑信号转导的主要模式,针对神经通信的分子水平研究是推进大脑连接组学的必要步骤。我们在这里认为,分子成像可以提供基于MRI和电生理技术无法获得的独特信息来表征大脑连接体。初步证据表明,分子成像可以以合理的空间和时间分辨率提供有效和可重复的大脑连接估计。因此,静态和功能性PET协议都是有价值的。我们鼓励神经科学界对大脑连接组采取综合的观点,包括磁共振成像技术、电生理工具和分子成像在内的各种方法有助于我们对大脑组织的理解。为此,多学科的努力和严格的数据分析流程至关重要。