【数据分析小兵】专注数据中台产品领域,覆盖开发套件,包含数据集成、数据建模、数据开发、数据服务、数据可视化、数据治理相关产品以及相关行业的技术方案的分享。对数据中台产品想要体验、做二次开发、关注方案资料、做技术交流的朋友们,可以关注我。
前言
小兵的数据资产入表系列文章持续为大家更新,系列文章的前三篇为大家介绍了数据资产入表的相关背景、数据资产入表路线框架以及入表前通过数据治理实现数据价值化的过程。本篇作为系列文章第四篇,继续沿着数据资产入表的实践路线,为大家介绍数据要素市场化、数据资产入表的核心环节——数据资产价值评估。阅读了前面的文章,想必大家已经认识到,数据要素市场化的前提是数据要素价值化,而数据要素价值化本质上是将数字化的知识和信息转化为新的生产要素参与市场交易流通的过程。数据本身具有天然的非竞争性和规模经济效应,数据的特殊性使得其只有使用价值而本身并无价值,但是要参与市场交易流通就需要确定资产估值,那么数据资产价值几何应该如何评估呢?
本文参考中国资产评估协会在财政部指导下制定的《数据资产评估指导意见》及相关研究资料,从数据资产价值评估依据、数据资产价值评估方法和数据资产价值评估工作流程三个方面为大家初步构建数据资产价值及评估体系。
01 数据资产价值评估依据
数据的价值可以通过货币和实物两种形式得以体现。一方面,当经过处理的数据用于交换时,数据以数据产品的形式存在;当成为商品生产和流通过程中的价值形成和增值载体时,数据本身成为商品。另一方面,当数据作为资源赋能于其他产品时,则将数据的价值转移到其他产品中,通过企业生产过程提高其他产品的价值。此时,数据价值通过其他具体商品的价值增值得以体现。总而言之,数据本身的价值并不容易直接体现。
什么是数据资产评估?
国内各界自 2019 年起陆续关注数据资产价值评估领域,行业组织、科研院所和产业界相继发布了相关政策文件、研究成果或实践案例。2020 年 1 月,中国资产评估协会于发布了《资产评估专家指引第 9 号——数据资产评估》、2019 年,德勤-阿里联合发布了《数据资产化之路——数据资产的估值与行业实践》、2021 年,中国信通院与浦发银行联合发布了《商业银行数据资产管理体系建设实践报告》、 2022 年,光大银行发布了《商业银行数据资产会计核算研究报告》。随着社会各界对数据资产价值评估研究及实践成果的发布,“数据资产评估”相关理论逐渐完善。
2023年9月8日,在财政部指导下,中国资产评估协会发布了《数据资产评估指导意见》,《意见》对数据资产评估的定义进行了明确。数据资产评估是指资产评估机构及其资产评估专业人员遵守法律、行政法规和资产评估准则,根据委托对评估基准日特定目的下的数据资产价值进行评定和估算,并出具资产评估报告的专业服务行为。
数据资产评估依据
资产评估是促进资产交易公平合理的市场中介行为,资产评估机构在进行数据资产评估时应该根据遵守相关法律法规、规范准则等对数据资产价值进行公平合理的评估。
-
法律法规:《中华人民共和国民法典》、《中华人民共和国数据安全法》、《中华人民共和国个人信息保护法》及数据资产的应用场景以及数据资产应用所涉及的地域、领域方面的法律法规。
-
规范准则:《资产评估基本准则》、《资产评估执业准则—资产评估报告》、《数据资产评估指导意见》、GB/T36344-2018《信息技术数据质量评价指标》、GB/T40685-2021《信息技术数据资产管理要求》国家标准等。
-
权属证明:数据资产相关登记证书、知识产权证、转让合同、投资协议、其他权属证明文件等。
-
估值依据:数据持有人提供的财务会计、经营方面的资料,国家有关部门发布的统计资料、技术标准和政策文件,以及评估机构收集的有关询价资料、参数资料等。
02 数据资产价值评估方法
数据资产评估是通过评估数据资产的价值,对数据资源配置进行优化的重要工具,是维护数据市场交易秩序,促进数据市场公平竞争不可或缺的环节。科学、合理地量化数据资产的价值,能够有效的保护各个经济体、市场参与者的经济利益等合法权益。同样的数据资产,如果被应用于不同企业,会创造不同的价值。不同行业的企业由于其自身的经营场景和管理模式不同,对数据的需求和定价也不同。以交通出行数据为例,网约车公司可以利用它来匹配司机和乘客,提高出行服务效率,增加收入;政府部门则可以利用这些数据优化道路建设,提高交通服务质量。
影响数据资产价值的四项基本因素包括成本因素、固有价值因素、市场因素和环境因素。
-
成本因素:外购数据存在购买成本与交易成本;自有数据在收集、存储、结构化处理、分析的过程中也会不断产生人工费用、材料费用、间接费用等。为了分析与归集成本,财务部门需要了解业务部门对物资、人员的使用与分配,探讨数据资产研究阶段与开发阶段的确认节点、数据资产与数据开发系统的区分与衡量等议题。
-
固有价值因素:固有价值依赖于数据集本身的各种指标,包括数据质量、数据规模、数据多样性与数据活性指标。其中,数据质量是保证数据应用的基础,包括准确性、完整性、规范性、一致性、时效性、可访问性等。
-
市场因素:数据资产的价值十分依赖于应用场景,数据资产供求双方的数量,买方间是否存在竞争性,卖方的历史信誉、评价等因素均可能影响供求双方的市场议价能力,从而影响数据资产价值。
-
环境因素:不同于其他资产,数据资产的边际复制成本极低,在使用数据资产时不可避免面临着确权问题与数据隐私性问题。我们需要探讨环境因素中的司法制度,研究人为介入制度和方法如何影响数据资产价值的衡量。
为了适用于不同场景,数据资产价值评估方法主要划分为成本法、收益法和市场法三种基本方法及其衍生方法。
成本法
成本法以形成资产的成本为基础计量资产价值,即新建该项数据资产所需花费的成本,其核心思路是通过重新形成数据资产所需的全部投入加上合理利润及相关税费确定数据资产的重置成本,考虑各项价值调整因素对资产价值的影响后得到数据资产价值。
成本法适用于缺乏活跃的交易市场,未来预期收益暂不确定,仍处于开发阶段的数据资产。
根据数据资产的特点,成本法可修正为重置成本乘价值调整系数。基本模型为
式中:
P——被评估数据资产价值;
C——数据资产的重置成本,主要包括前期费用、直接成本、间接成本、机会成本和相关税费等。前期费用包括前期规划成本,直接成本包括数据从采集至加工形成资产过程中持续投入的成本,间接成本包括与数据资产直接相关的或者可以进行合理分摊的软硬件采购、基础设施成本及公共管理成本;
δ——价值调整系数。价值调整系数是对数据资产全部投入对应的期望状况与评估基准日数据资产实际状况之间所存在的差异进行调整的系数,例如:对数据资产期望质量与实际质量之间的差异等进行调整的系数。
收益法
收益法是基于预期收益评估资产价值的方法,数据资产的价值由其投入使用后的预期收益能力体现,其核心思路是估计未来数据资产产生的业务收益,并考虑资金的时间价值,将各期收益加总获得数据价值。
收益法能够通过预期未来收益直接体现数据价值实现过程,适用于数据资产已经实现商业化,或数据资产预期收益能可靠获得、预期收益期限和风险能够合理估计的应用场景。
收益法的基本模型为
式中:
P——被评估数据资产价值;
Ri——未来第i年的预期收益;
r——折现率;
n——收益年限;
i——年序号。
根据不同数据资产所实现的应用场景商业模式的不同,可选择直接收益预测、分成收益预测、增量收益预测、超额收益预测等不同模型进行收益预测。
-
直接收益预测模型:适用于被评估数据资产的应用场景及商业模式相对独立,且数据资产对应服务或者产品为企业带来的直接收益可以合理预测的情形。
-
分成收益预测模型:适用于软件开发服务、数据平台对接服务、数据分析服务等数据资产应用场景。
-
增量收益预测模型:适用于可以使应用数据资产主体产生额外的可计量的现金流量或者利润的情形,或者使应用数据资产主体获得可计量的成本节约的情形。
-
超额收益预测模型:适用于被评估数据资产可以与资产组中的其他数据资产、无形资产、有形资产的贡献进行合理分割,且贡献之和与企业整体或者资产组正常收益相比后仍有剩余的情形。
市场法
市场法是基于相同或相似数据资产的市场可比交易案例的方法,在有效、活跃市场基础上,选取可比案例对数据资产进行修正从而得到评估数据资产价值。对案例可比性的判断,通常可从数据权利类型、数据交易市场及交易方式、数据规模、应用领域、应用区域及剩余年限等方面进行分析。
市场法适用于具有公开且活跃的交易市场的数据资产,使用市场法时应根据该数据资产的特点,选择合适的可比案例,对比该数据资产与可比案例的差异,确定调整系数,并将调整后的结果汇总分析得出被评估数据资产的价值。
数据资产市场法的具体模型为:
式中:
𝑃——被评估数据资产价值;
𝑛——被评估数据资产所分解成的数据集的个数;
𝑖——被评估数据资产所分解成的数据集的序号;
𝑄𝑖——参照数据集的价值;
𝑋𝑖1——质量调整系数;
𝑋𝑖2——供求调整系数;
𝑋𝑖3——期日调整系数;
𝑋𝑖4——容量调整系数;
𝑋𝑖5——其他调整系数。
衍生方法
基于成本法、收益法、市场法三种基本方法,数据资产评估的衍生方法还包括数据资产价值指数、梅特卡夫定律、大数据合作资产估值模型、实物期权模型等。
评估方法对比
成本法、收益法和市场法各有优缺点,适用于不同的场景,对比如下:
虽然在理论研究层面数据资产价值评估方法已初具成果,但仍然面临三大问题:
-
数据资产价值评估目的、场景和相应方法尚未统一;
-
评估过程主观性较大、缺少量化指标、技术应用程度低,使得数据资产价值评估结果不准确;
-
缺少各行业数据资产价值评估实践案例,导致理论方法对于企业实际开展数据资产价值评估的指导性有限。
03 数据资产价值评估工作流程
数据资产价值评估在厘清数据资产权属、构建数据资产的定价和交易体系、促进数据要素市场发展具有至关重要的作用。一般来说,根据数据资产价值评估委托人拟实施经济行为的不同实行的评估工作略有差异,但是评估工作流程大致是相同的。
(注:常见的经济行为包括:以数据资产对外投资、数据资产转让置换、数据资产处置、以数据资产偿还债务、数据资产涉讼、收购数据资产、接受数据资产出资、接受数据资产抵债、以数据资产引战投、数据资产授信融资、数据资产抵质押等)
资产评估机构进行数据资产价值评估的主要工作流程包括:明确基本事项、核证数据资产、收集相关资料、评定估算、征求关系人意见、出具评估报告。
(1)明确基本事项
第一步应明确数据资产评估业务的基本事项。需明确的数据资产评估业务基本事项一般应包括:
-
委托人、产权持有人和委托人以外的其他资产评估报告使用人;
-
评估目的;
-
评估对象和评估范围;
-
价值类型;
-
评估基准日;
-
资产评估项目所涉及的需要批准的经济行为的审批情况;
-
资产评估报告使用范围;
-
资产评估报告提交期限及方式;
-
评估服务费及支付方式;
-
委托人、其他相关当事人与资产评估机构及其资产评估专业人员工作配合和协助等需要明确的重要事项。
在明确上述基本事项后,还需进一步明晰被评估数据资产的基本情况,例如:数据资产的信息属性、法律属性、价值属性等。信息属性主要包括数据名称、数据结构、数据字典、数据规模、数据周期、产生频率及存储方式等。法律属性主要包括授权主体信息、产权持有人信息,以及权利路径、权利类型、权利范围、权利期限、权利限制等权利信息。价值属性主要包括数据覆盖地域、数据所属行业、数据成本信息、数据应用场景、数据质量、数据稀缺性及可替代性等。
(2)核证数据资产
第二步根据数据基本情况和客观条件,制定适当的清查核实方案;按照方案,对数据资产的真实性、有效性、完整性等进行核验。根据评估业务具体情况和数据资产的特性,对被评估数据资产进行具有针对性的现场调查。现场调查手段通常包括询问、访谈、核对、监盘、勘查等。由于数据资产具有非实体性、依托性等特征,核对、监盘、勘查等手段通常采用技术手段实现。
(3)收集相关资料
第三步收集相关资料,根据工作方案,对数据资产的收益状况、成本构成、市场表现等方面进行现场调研和访谈,收集包括数据资产基本信息、权利信息、相关财务会计信息和其他资料,资料来源包括数据持有人、相关当事方,以及公开市场、政府部门、各类专业机构和其他相关部门等公开渠道,需重点关注影响数据资产价值的各项因素。
通常,影响数据资产价值的因素包括成本因素、场景因素、市场因素和质量因素。成本因素包括形成数据资产所涉及的前期费用、直接成本、间接成本、机会成本和相关税费等。场景因素包括数据资产相应的使用范围、应用场景、商业模式、市场前景、财务预测和应用风险等。市场因素包括数据资产相关的主要交易市场、市场活跃程度、市场参与者和市场供求关系等。质量因素包括数据的准确性、一致性、完整性、规范性、时效性和可访问性等。
(4)评定估算
第四步根据上述过程中明确的评估目的、评估对象、价值类型,以及信息和资料收集等情况,分析市场法、收益法、成本法和衍生方法的适用情况选择评估方法,建立适当的评估模型,选取相应的公式和参数进行分析、计算和判断,对数据资产价值进行评定估算,形成测算结果。在对形成的测算结果进行综合分析后,形成合理评估结论。在评定、估算形成评估结论后,撰写并形成初步数据资产评估报告。
(5)征求关系人意见
第五步在不影响对数据资产评估结论进行独立判断的前提下,与委托人或者委托人同意的其他相关当事人就数据资产评估报告有关内容进行沟通,对沟通情况进行独立分析,并决定是否对数据资产评估报告进行调整。
(6)出具评估报告
在完成上述资产评估程序后,资产评估机构出具并提交正式数据资产评估报告。
04 小结
“数据资产评估”是确定数据资产货币价值的过程。数据资产评估在数字经济的高质量发展中起到了关键作用,它不仅能够保障数据要素的有序流通与价值挖掘,而且推动数据要素市场化配置。对企业自身发展而言,数据资产价值评估结果将更加直观、丰富的展现数据给企业带来的业务和财务价值,进而推动企业构建数据文化,加大数据资产管理投入,调动各方参与数据资产管理工作的积极性,提高企业使用数据辅助决策的效率。
很多人认为数据资产评估是数据资产入表的前置步骤,这实质上是混淆了“价值评价”和“资产评估”的概念。只有特定场景如并购、出资等,企业需要首先对数据资产进行评估,以形成数据资产的交易对价,但此价格是作为交易对手的成本,计入其资产负债表相关科目。其余大多数的情况,企业应该根据《暂行规定》的指引,梳理数据产品的研究和开发阶段的支出(此处考虑大多数计入数据资源无形资产的情况),以实际成本法完成入表操作。
数据资产市场目前正处于高速发展的阶段,政府部门和监管机构积极推动相关研究和规范制定,同时越来越多的企业也意识到自身拥有大量有价值的数据资产。然而,对于“数据资产价值评估”的实践尚未在企业内部得到有效的落地与应用,未来这一领域还需要结合企业的实践,根据数据资产生命周期进行动态调整来建立一套完善的数据资产价值评估体系,确保数据资产的合理定价并为数据交易提供价值支撑。
小兵的“数据资产入表”系列文章持续更新,本文为大家介绍了数据要素市场化、数据资产入表的核心环节——数据资产价值评估,想必大家对数据资产价值及评估体系有了初步的印象,对数据资产入表知识体系的认识又前进了一步。后续小兵将继续帮助大家构建并完善数据资产入表知识体系,如果还没有阅读过“数据资产入表”系列前几篇文章,欢迎各位读者前溯阅读,帮助您更多的了解“数据资产入表”。
免责声明
本文引用的参考文献搜集于互联网,非原创,如有侵权请联系小编删除!请勿将该文章用于任何商业用途,仅供学习参考,违者后果自负!