概率论发展的转折点:贝特朗悖论

和所有的数学分支类似,概率论的也是经历了从直觉到严格的过程。其中的一个转折点就是贝特朗悖论。

1 古典派

古典派也就是高中时候学的概率论。它的核心哲学思想是:不充分理由原则。

1.1 不充分理由原则

雅各布·伯努利(1654-1705):

提出,如果因为无知,使得我们没有办法判断哪一个结果会比另外一个结果更容易出现,那么应该给予它们相同的概率。比如:

  • 硬币:由于不清楚硬币哪一面更容易出现,那么应该给予正面、反面相同的概率,即为 \frac{1}{2}

  • 骰子:我们不清楚骰子哪一面更容易出现,那么应该给予每一面相同的概率,即为 \frac{1}{6}

此称为 不充分理由原则(Insufficient Reason Principle)。

1.2 古典概率

以不充分理由原则为基础,经由皮埃尔-西蒙·拉普拉斯侯爵(1749-1827):

之手,确立了 古典概率 的定义,即:“未知的概率都是等概率”。

整个19世纪的人们都广泛接受这个定义,并发展出了一系列的定义和定理。

2 贝特朗悖论

法国数学家贝特朗(也翻译为“伯特兰”)于1888年在他的著作《Calcul des probabilités》中提到了这个悖论:

原始的悖论比较复杂,下面我们给出一个等价的形式。

2.1 锯木厂的木头

:有一家锯木厂,它会把木头切成不同的木方,木方的截面都是正方形,边长会在 1\sim 3 尺之间随机浮动:

那么根据古典概率,该锯木厂生产出来的正方形边长在 1\sim 2 尺之间的概率为多少?

:根据不充分理由原则,因为不知道哪一种边长更容易出现,那么就应该给予它们相同的概率,也就是说 1\sim 3 之间每一种长度都是等可能的。而 1\sim 2 包含了一半的可能长度:

所以,正方形边长在 1\sim 2 尺之间的概率为: \frac{2-1}{3-1}=\frac{1}{2} 。

2.2 悖论的产生

刚才的问题还可以转为面积来解答,1\sim 3 尺边长的正方形面积为 1\sim 9 平方尺,1\sim 2 尺边长的正方形面积为 1\sim 4 平方尺:

同样,根据不充分理由原则,1\sim 9 平方尺之间的正方面面积是等可能的,那么正方形面积在 1\sim 4 平方尺之间的概率为 \frac{3}{8} :

选择对“长度”还是对“面积”运用不充分理由原则,同一个问题会得到了不同的概率:

那么哪个是对的?

3 现代概率论

3.1 反思

19世纪不少人相信只要找到适当的等概率,就可以得到问题的唯一解。直到贝特朗悖论出现,人们才开始反思古典概率中的不合理之处:“等概率”的描述实在是太模糊了,存在歧义。

在后来数学家的不断努力中,概率论变得越来越严谨,大学中学习的公理化的现代概率论就是集大成者。

下面用现代的概率论重新来审视贝特朗悖论,你会发现其实根本没有矛盾之处。

3.2 重解贝特朗悖论

:有一家锯木厂,它会把木头切成不同的木方,木方的截面都是正方形,边长会在 a\sim b 尺之间随机浮动:

也就是说木方的边长是一个随机变量 X ,符合均匀分布(均匀分布就是等概率的意思):X\sim U(a,b), (0 < a < b)

那么:

    (1)该锯木厂生产出来的正方形边长在 c\sim d 尺之间的概率为多少(其中 a < c < d < b )?

    (2)它的面积 Y=X^2 又符合什么分布呢?

:(1)记 X 的累积分布函数为 F_X(x) ,其概率密度函数为 p_X(x),因为 X\sim U(a,b) ,所以:

p_X(x)= \begin{cases} \frac{1}{b-a}, &a < x < b\\ 0, & otherwise \end{cases}

那么要求的正方形边长在 c\sim d 尺之间的概率为:

P(c\le X\le d)=\int_c^d p_X(x)\mathrm{d}x=\frac{d-c}{b-a}

    (2)假设 Y 的累积分布函数为 F_Y(y) ,其概率密度函数为 p_Y(y) 。先来求  F_Y(y)  :

\begin{aligned} F_Y(y) &=P(Y\le y)=P(X^2\le y) \\ \\ &=P(X\le \sqrt{y})=F_X(\sqrt{y}) \end{aligned}

将   F_Y(y)   对 y 求导就得到了概率密度函数,也就是得到了 Y 的分布:

\begin{aligned} p_Y(y) &=\frac{\mathrm{d}}{\mathrm{d}y}F_Y(y)=\frac{\mathrm{d}}{\mathrm{d}y}F_X(\sqrt{y})\\ \\ &=\frac{\mathrm{d} F_X(\sqrt{y})}{\mathrm{d}\left(\sqrt{y}\right)}\frac{\mathrm{d}\sqrt{y}}{\mathrm{d}y}\\ \\ &=\frac{1}{2\sqrt{y}}p_X(\sqrt{y})\\ \\ &= \begin{cases} \frac{1}{2\sqrt{y}}\cdot\frac{1}{b-a}, &a < \sqrt{y} < b\\ 0, & otherwise \end{cases}\\ \\ &= \begin{cases} \frac{1}{2\sqrt{y}(b-a)}, &a^2 < y < b^2\\ 0, & otherwise \end{cases}\\ \end{aligned}

(1)(2)两个问题回答下来,可见边长符合均匀分布时,面积并不符合均匀分布。

4 总结

贝特朗悖论产生的原因在于,古典概率中的“等概率”非常模糊:

  • 边长的分布是未知的,所以是等概率的
  • 面积的分布是未知的,所以是等概率的

进而导出了矛盾。现代概率论通过分布来描述边长的随机性后,这种模糊性消失了,贝特朗悖论中的矛盾也就不存在的。

同学们还可以试试假设面积符合均匀分布,试求一下边长符合什么分布。

 

 

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值