贝特朗(Bertrand)悖论

几何概型

抛硬币、掷骰子之类游戏中涉及的概率,是离散的,抛丢结果的数目有限(2或6)。如果硬币或骰子是对称的,每个基本结果发生的概率相等。这种随机事件被称为古典概型。

数学家们将古典概型推广到某些几何问题中,使得随机变量的结果变成了连续的,数目成为了无限多,这种随机事件被称之为“几何概型”。

古典概型向几何概型的推广,类似于有限多个整数向“实数域”的推广。了解几何概型很重要,因为与之相关的“测度”概念(长度、面积等),是现代概率论的基础。

几何概型和古典概型都使用“等概率假设”。然而,只要涉及到无穷大,便经常会产生一些怪异的结果。著名的几何概型悖论是法国数学家贝特朗(Joseph Louis Bertrand,1822–1900)于1889年提出的贝特朗悖论。

贝特朗问题

在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形的边长的概率是多少?

求解方法

方法1:首先假设弦的一端固定在圆上某一点(比如A),如上图(a),弦的另一端在圆周上移动。移动端点落在弧BC上的弦,长度均超过圆内接正三角形的边长L,而其余弦的长度都小于L。由于对称性,BC弧长占整个圆周的1/3,所以可得弦长大于L的概率为BC弧长与圆周长之比,即P=1/3。

方法2:首先选择圆的一个直径,比如上图(b)中的AD。过该直径上的任何点作直径的垂线,与圆相交形成弦。从图2b中可以看出:当直径上动点的位置在B和C之间时,所得弦的弦长大于正三角形的边长L,动点位置在BC之外的弦长小于L。因为线段BC的长度是整个直径的一半,所以由此可得弦长大于L的概率为P=1/2。

方法3:如上图(c)所示,作一个半径只有圆的半径的二分之一的同心圆(称为小圆),称原来的圆为“大圆”。考虑大园上任意弦的中点的位置可知:当中点位于小圆内部时,弦长符合大于L的要求。因为小圆的面积是大圆面积的1/4。所以,概率也为P=1/4。

同一问题有三种不同答案,上述的三种解法可以用下图进行更加直观地表示。如果观测弦的中点分布情况,方法1和方法2的中点分布是不均匀的,方法3的中点分布是均匀的。若观测弦的分布情况,方法2的弦会看起来比较均匀,而方法1和方法3的弦则较不均匀。

图2

悖论分析

方法1:由于对称性,可预先固定弦的一端。仅当弦与过此端点的切线的交角在60°~ 120° 之间,其长才合乎要求。所有方向是等可能的(Chord's end points are random,则所求概率为1/3 。此时假定端点在圆周上均匀分布。

方法2:由于对称性,可预先指定弦的方向。作垂直于此方向的直径,只有交直径于1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长。所有交点(弦与圆心的距离)是等可能的(Distance from the center is random,则所求概率为1/2 。此时假定弦的中心在直径上均匀分布。

方法3:弦被其中点位置唯一确定。只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求。中点位置都是等可能的(Point of intersection with a perpendicular is random over the circle,则所求概率为1/4。此时假定弦长被其中心唯一确定。

之所心对同一问题存在着三种不同答案,究其原因在于圆内“取弦”时规定尚不够具体,不同的“等可能性假定”导致了不同的样本空间。贝特朗悖论引起人们注意,在定义概率时要事先明确指出样本空间是什么。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带着地球去浪一浪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值