传统的SAR图像去噪方法一般是首先设计滤波模板和权系数,而滤波输出则是当前点和模板内周围点的灰度值的加权和,然而此方法会导致图像的边缘模糊。为了克服这一缺陷,出现了各种自适应滤波算法,以达到在滤波的同时,尽量保存图像的边缘信息。本文引用的双边滤波器不仅能考虑到含噪图像的灰度信息,也充分利用了图像的位置信息。本文中,我们结合了小波变换进行图像的分解,并在分解的高频部分采用阈值去噪。我们得到了较高的评价指数以及很好的视觉效果。应用双边滤波器的关键问题是他的参数选择,我们采用了根据等效视数(ENL)和EPD-ROA方法的综合评价,以选取参数。
为了客观评价本文算法对SAR图像一致性区域的降斑效果,在Bedfordshire图像上选取矩形区域,计算其等效视数(ENL)和EPD-ROA:
SAR | Bedfordshire | ||||
评价指标 | A(ENL) | B(ENL) | C(ENL) | EPD-ROA水平 | EPD-RO垂直 |
bilateral | 7.3339 | 5.9984 | 5.3345 | 0.97143 | 0.95261 |
WT | 23.3448 | 18.1876 | 47.5344 | 0.94993 | 0.9183 |
bilateralWT | 46.3298 | 44.6860 | 49.0511 | 0.97325 | 0.94094 |
由结果图及表中的数据可以看出,两者的结合,其效果不只是简单的叠加。基于双边滤波的小波变换相比于前两种算法有了很大的改观,很大程度上消除了小波变换中的残留斑点。但是它仍然存在“伪迹”以及少量的斑点噪声,并且在边缘保持部分不是很理想。