基于小波变换和双边滤波器的SAR图像降斑

传统的SAR图像去噪方法一般是首先设计滤波模板和权系数,而滤波输出则是当前点和模板内周围点的灰度值的加权和,然而此方法会导致图像的边缘模糊。为了克服这一缺陷,出现了各种自适应滤波算法,以达到在滤波的同时,尽量保存图像的边缘信息。本文引用的双边滤波器不仅能考虑到含噪图像的灰度信息,也充分利用了图像的位置信息。本文中,我们结合了小波变换进行图像的分解,并在分解的高频部分采用阈值去噪。我们得到了较高的评价指数以及很好的视觉效果。应用双边滤波器的关键问题是他的参数选择,我们采用了根据等效视数(ENL)和EPD-ROA方法的综合评价,以选取参数。

为了客观评价本文算法对SAR图像一致性区域的降斑效果,在Bedfordshire图像上选取矩形区域,计算其等效视数(ENL)和EPD-ROA:

SAR

Bedfordshire

评价指标

A(ENL)

B(ENL)

C(ENL)

EPD-ROA水平

EPD-RO垂直

bilateral

7.3339

5.9984

5.3345

0.97143

0.95261

WT

23.3448

18.1876

47.5344

0.94993

0.9183

bilateralWT

46.3298

44.6860

49.0511

0.97325

0.94094

 

 

由结果图及表中的数据可以看出,两者的结合,其效果不只是简单的叠加。基于双边滤波的小波变换相比于前两种算法有了很大的改观,很大程度上消除了小波变换中的残留斑点。但是它仍然存在“伪迹”以及少量的斑点噪声,并且在边缘保持部分不是很理想。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值