PNN神经网络概述

概率神经网络(PNN)结合了径向基神经网络与概率密度估计算法的优势,适用于识别与分类任务。PNN由输入层、样本层、求和层和竞争输出层构成,其训练误差小,能快速获得收敛的Bayes优化解。在求和层中,通过Parzen窗函数估计各类别的条件概率,从而实现分类。相比于传统的BP神经网络,PNN在识别效率上有明显提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        PNN,Probabilistic Neural Networks,即概率神经网络[43~45]是一种基于贝叶斯决策规则的神经网络技术,其神经网络的训练期望误差较小,是一种基于统计原理的人工神经网络。概率神经网络以Parzen窗口函数为激活函数,其同时包含了径向基神经网络与经典的概率密度估计算法的优势,因此在识别与分类方面,与传统的BP神经网络相比具有较为明显的性能优势。 其结构如下:

    从图的结构可知,PNN概率神经网络从结构上划分主要包括PNN输入层,PNN样本层,PNN求和层以及PNN竞争输出层四个网络层次。其中样本层的主要功能是将输入的信号进行加权求和运算,并通过一个激活函数运算后送给下一层,其中激活函数为高斯函数,即:

        

其中,为径向基函数的中心,表示特性函数第i个分量对弈的开关参数。

概率神经网络的求和层中各个网络单元需要和对应类别的模式单元相连接,而各个单元需要根据Parzen方法求和估计各类的概率,即其条件概率为:

                   

其中,公式中变量表示类别,变量X表示识别样本,变量表示类别i的模式样本(在概率神经网络中做为权值),变量m表示向量维数,变量表示平滑参数,变量n表示类i的模式样本数量。

和传统的神经网络相比,PNN神经网络最大的优势在于其不需要进行多次计算,就可以获得收敛的Bayes优化解。因此,在进行调试识别的时候,采用PNN神经网络,可以以较少的训练次数获得所期望的测试结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值