基于EfficientNet的目标识别仿真

EfficientNet是由谷歌提出的通过复合缩放方法改进的卷积神经网络模型,它均衡地考虑了深度、宽度和分辨率,提高了模型的准确率和效率。通过AutoML的MNAS框架进行神经架构搜索,EfficientNet在ImageNet等多个数据集上展现出卓越性能,同时具有强大的迁移学习能力。
摘要由CSDN通过智能技术生成

在开发以卷积神经网络(CNN)为核心的机器学习模型时,我们通常会先使用固定的资源成本,构建最初的模型,然后增加更多资源(层数)扩展模型,从而获得更高的准确率。

一般来说,模型的扩大和缩小都是任意增加 CNN 的深度或宽度,抑或是使用分辨率更大的图像进行训练和评估。虽然这些传统方法提高准确率的效果不错,但大多需要繁琐的手动调整,还可能无法达到最佳性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值