基于BP神经网络+HOG特征提取的视频中车辆车牌识别算法仿真

本文介绍了基于HOG特征提取和Adaboost的算法进行车辆车牌定位,随后利用BP神经网络进行训练识别。通过算法流程和仿真结果展示,阐述了如何克服颜色相似区域误定位问题,以及BP神经网络相比SVM在多分类识别上的优势。
摘要由CSDN通过智能技术生成

步骤一:定位和跟踪

        这里,没有直接采用之前的方案,是因为在设计的时候,发现直接采用颜色等直接特征提取然后进行二值化处理的方法,如果视频中出现颜色类似的区域,则很有可能错误的定位,例如在公交车中车牌区域范围和前窗以及部分的背景比较相似,直接采用这种方法会出错。

        这里,定位的算法,我们使用的是HOG特征提取和Adaboost的算法进行定位。对应的程序为:

      

       具体的原理如下所示:

adaboost

http://www.doc88.co

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值