目录
2.基于 CNN+LSTM 混合网络模型的调制信号检测算法原理
在现代通信系统中,调制信号检测是一项关键任务,它对于信号的接收、解调以及后续的处理至关重要。传统的调制信号检测方法通常基于信号的统计特性或特征提取,但在复杂的通信环境下,这些方法往往面临着性能下降的问题。随着深度学习技术的发展,卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)等神经网络模型在信号处理领域展现出了巨大的潜力。
1.CNN 和 LSTM 简介
卷积神经网络(CNN)
结构:CNN 主要由卷积层、池化层和全连接层组成。卷积层通过卷积核与输入数据进行卷积操作,提取输入数据的局部特征。池化层对卷积层的输出进行下采样,减少特征图的大小,降低计算量。全连接层将池化层的输出展平后连接到全连接层,进行分类或回归任务。
特点:CNN 具有局部连接、权值共享和池化等特点,能够有效地提取输入数据的局部特征,并且对输入数据的平移、旋转和缩放具有一定的不变性。
长短期记忆网络(LSTM)
结构:LSTM 是一种特殊的循环神经网络(Recurrent Neural Network,RNN),它由输入门、遗忘门、输出门和细胞状态组成。输入门控制新的输入信息进入细胞状态的程度,遗忘门控制旧的细胞状态被遗忘的程度,输出门控制细胞状态输出的程度。
特点:LSTM 能够有效地处理序列数据,并且对长期依赖关系具有很好的记忆能力。它通过门控机制来控制信息的流动,避免了传统 RNN 中的梯度消失和梯度爆炸问题。
模型结构如下图所示:
2.基于 CNN+LSTM 混合网络模型的调制信号检测算法原理
信号预处理
采样和数字化:对接收的调制信号进行采样和数字化,将其转换为数字信号序列。
归一化:对数字信号序列进行归一化处理,将其值映射到 [0, 1] 区间内,以便于神经网络的训练和处理。
CNN 特征提取
卷积层操作:将归一化后的数字信号序列作为输入,通过多个卷积层进行特征提取。每个卷积层由多个卷积核组成,卷积核与输入数据进行卷积操作,提取输入数据的局部特征。卷积操作可以表示为:
LSTM 序列建模
输入数据准备:将 CNN 提取的特征序列作为 LSTM 的输入数据。由于 LSTM 是一种序列模型,因此需要将特征序列按照时间顺序进行排列。
LSTM 单元操作:LSTM 单元由输入门、遗忘门、输出门和细胞状态组成。输入门控制新的输入信息进入细胞状态的程度,遗忘门控制旧的细胞状态被遗忘的程度,输出门控制细胞状态输出的程度。LSTM 单元的操作可以表示为:
3.MATLAB程序
..16......................................................
% 展开层
sequenceUnfoldingLayer('Name','seq_ufold')
% 平滑层
flattenLayer('Name','flat')
% LSTM特征
lstmLayer(24,'Name','lstm1')
dropoutLayer(0.25,'Name','drop1')
% LSTM输出
lstmLayer(12,'OutputMode',"last",'Name','lstm2')
dropoutLayer(0.2)
% 全连接层
fullyConnectedLayer(2, "Name", "fc")
% Softmax层
softmaxLayer("Name", "softmax")
% 分类层
classificationLayer("Name", "classification")
];
layers = layerGraph(layers);
layers = connectLayers(layers,'seq_fold/miniBatchSize','seq_ufold/miniBatchSize');
% 定义训练选项
options = trainingOptions('sgdm', ... % 使用随机梯度下降法
'ExecutionEnvironment', 'auto', ... % 自动选择执行环境(CPU 或 GPU)
'LearnRateSchedule', 'piecewise', ... % 学习率调度方式为 piecewise
'InitialLearnRate', 0.001, ... % 初始学习率为 0.001
'shuffle', 'every-epoch', ... % 每个 epoch 重新打乱数据
'MaxEpochs', 20, ... % 最大训练轮数为 10
'MiniBatchSize', 31 * 20, ... % 小批量大小为 31 * 20
'plots', 'training-progress', ... % 显示训练进度图
'Verbose', false); % 不显示详细信息
% 训练网络
net = trainNetwork(XTrain, YTrain, layers, options);
clear XTrain YTrain; % 清除训练数据和标签以释放内存
% 测试
YTest = categorical(YTest, [1 0], {'ON', 'OFF'}); % 将测试标签转换为分类数组
4.仿真结果
qpsk训练过程
qpsk训练过程
qpsk训练过程
检测结果
该算法通过 CNN 提取输入信号的局部特征,通过 LSTM 提取输入信号的序列特征,从而提高了调制信号检测的准确性和鲁棒性。实验结果表明,该算法在不同的信噪比条件下都能够取得较高的检测准确率,并且具有较好的鲁棒性和计算效率。
5.完整程序下载
完整可运行代码,博主已上传至CSDN,使用版本为matlab2022a: