人工智能、深度学习、机器学习常见面试题261~280

本文总结了261至280道关于人工智能、深度学习和机器学习的面试题,涵盖最优化方法、主成分分析(PCA)、降维的必要性和目的、评估指标、模型评估方法、超参数调优、过拟合与欠拟合等多个关键知识点。文章详细讲解了梯度下降法、牛顿法、拟牛顿法和共轭梯度法等最优化方法,并讨论了PCA在降维中的作用、降维的目的以及防止过拟合和欠拟合的策略。此外,还涉及了A/B测试、模型评估方法如交叉验证、自助法等。
摘要由CSDN通过智能技术生成

目录

261.常见的几种最优化方法

262.主成分分析(PCA)

263.降维的必要性

264.降维的目的

265.准确率,精确率,召回率,F1值(H-mean值)

266.ROC曲线

267.AUC值

268.什么是 A/B测试?

269.模型评估方法

270.超参数调优

271.过拟合和欠拟合

272.检验方法

273.KNN最近邻分类算法的过程

274.KD-Tree相比KNN来进行快速图像特征比对的好处在哪里?

275.什么是线性回归

276.过拟合、欠拟合如何解决

277.什么场景下用L2正则化

278.什么场景下使用L1正则化

279.什么是ElasticNet回归

280.线性回归要求因变量服从正态分布?


261.常见的几种最优化方法

1. **梯度下降法**

   梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。梯度下降法的搜索迭代示意图如下图所示:

 缺点:靠近极小值时收敛速度减慢;直线搜索时可能会产生一些问题;可能会“之字形”地下降。

2. **牛顿法**

   牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数f (x)的泰勒级数的前面几项来寻找方程f (x) = 0的根。牛顿法最大的特点就在于

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值