机器学习/人工智能的笔试面试题目——CNN相关问题总结

本文总结了深度学习面试中关于卷积神经网络(CNN)、循环神经网络(RNN)及其变种LSTM的关键问题,包括梯度消失与膨胀原因、CNN工作原理、Pooling操作、Batch Normalization(BN)的训练与测试区别、以及RNN和LSTM的记忆功能。还探讨了RNN的长期依赖问题和解决方案,以及K-means聚类的优化和评估指标。
摘要由CSDN通过智能技术生成

目录

1.梯度消失和梯度膨胀的原因是什么?

2.简述CNN的工作原理?

3.Pooling操作是什么?有几种?作用是什么?

4.BN训练和测试的区别

5.卷积操作的本质特性包括稀疏交互和参数共享,具体解释这两种特性以其作用?

6.简述RNN模型原理,说说RNN适合解决什么类型问题?

7. RNN和DNN有何异同?

8.RNN为什么有记忆功能?

9.长短期记忆网络LSTM是如何实现长短期记忆功能的?

10.长短期记忆网络LSTM各模块都使用什么激活函数,可以使用其他激活函数么?

11.GRU和LSTM有何异同

12.什么是Seq2Seq模型?该模型能解决什么类型问题?

13.注意力机制是什么?Seq2Seq模型引入注意力机制主要解决什么问题?

14.RNN的长期依赖(Long-Term Dependencies)问题是什么?怎么解决

15.RNN如何解决梯度消失问题

16.试试证明kmeans算法的收敛性

17.如何对Kmeans进行调优

18.Kmeans有哪些优缺点?是否有了解过改进的模型,举例说明?

19.**兰德指数**(RI, *Rand Index*)能度量聚类过程中的假阳性和假阴性结果的惩罚

20.如何选择初始类族的中心点?

21.简述kmeans建模过程?

22.在训练过程中哪些参数对模型效果影响比较大?这些参数造成影响是什么?


1.梯度消失和梯度膨胀的原因是什么?

  (1)深度学习的网络层数太多,在进行反向传播时根据链式法则,要连乘每一层梯度值

  (2)每一层的梯度值是由,非线性函数的导数以及本层的权重相乘得到的,这样非线性的导数的大小和初始化权重的大小会直接影响是否发生梯度弥散或者梯度爆炸

  注:任何网络都有可能发生梯度弥散或者梯度爆炸,这是深度学习的基本性质决定的,无法避免。

2.简述CNN的工作原理?

CNN利用了图像的三个性质:

(1)图像的pattern通常比整张图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值