目录
1.旅行商问题(TSP)简介
TSP问题,即旅行商问题(Traveling Salesman Problem),是一个经典的组合优化问题。该问题可以描述为:一个旅行商人需要访问所有给定的城市,每个城市只能访问一次,并且最后需要返回到起始城市,目标是找到访问所有城市并返回起点的最短路径。
TSP问题可以用图论的语言来描述。给定一个带权完全无向图,图中每个顶点代表一个城市,每条边代表两个城市之间的路径,边上的权重代表两个城市之间的距离。TSP问题就是要求解该图中一个权值最小的Hamilton回路,即一个访问每个顶点一次并回到起点的回路,且该回路的总权值(总距离)最小。TSP问题在实际应用中具有广泛的应用价值,如物流配送、路径规划、电路板布线等领域都需要解决类似的问题。因此,对TSP问题的研究具有重要的理论意义和实际应用价值。
TSP是一个经典的组合优化问题,其目标是找到访问一组城市并返回起点的最短可能路线。在给定城市间距离的情况下,这个问题可以表述为找到一个排列,使得按照该排列顺序访问所有城市并返回起点的总距离最短。
TSP问题是NP完全问题,这意味着在多项式时间内寻找全局最优解非常困难,除非P=NP问题得到解决。然而,存在多种近似算法和启发式方法来求得高质量的解,如最近邻算法、2-opt算法、模拟退火算法、遗传算法、分支定界法以及蚁群算法等。
2.NN(最近邻)算法原理
从算法的角度来看,TSP问题是一个NP难问题,即目前没有已知的多项式时间算法可以求解该问题。对于小规模的TSP问题,可以使用枚举法、回溯法、动态规划等方法来求解。但是对于大规模的TSP问题,这些方法的计算量会非常大,难以在合理的时间内得到解。
因此,对于大规模的TSP问题,通常会使用近似算法或启发式算法来求解。这些算法可以在较短的时间内得到一个较优的解,但不一定是最优解。常见的近似算法和启发式算法包括遗传算法、模拟退火算法、蚁群算法、神经网络算法等。
其中,最近邻优化算法是一种贪心算法,用于求解TSP问题的近似解。该算法从某个城市开始,然后每次选择距离当前城市最近的未访问城市作为下一个访问城市。这个过程一直持续到所有城市都被访问为止,最后返回起点城市。
最近邻算法的基本思想是:如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别。这种方法在处理分类和回归问题时简单而有效,但它也存在一些缺点,如计算量大、对噪声敏感等。
最近邻算法的算法步骤
- 选择起点:随机选择一个城市作为起点。
- 选择下一个城市:在当前已访问的城市中,选择距离其最近的未访问城市作为下一个要访问的城市。
- 更新状态:将新选择的城市标记为已访问。
- 重复过程:重复步骤2和3,直到所有城市都被访问。
- 返回起点:从最后一个访问的城市返回起点城市。
尽管NN算法实现简单,但它通常不能找到全局最优解,因为该策略倾向于局部最优而非全局最优。然而,可以通过一些优化策略来改进,如“两次扫描”NN法,即先按照NN策略走一趟,然后反过来再按NN策略走一趟,取两趟总距离最小的结果。总结来说,基于NN最近邻优化算法的TSP问题求解是一种简单直观的方法,但因其贪婪性质往往导致非最优解。实际应用中,需要通过各种手段进一步优化算法,或与其他高效算法结合使用,以提升解的质量和效率。
3.matlab程序
........................................................................
% Extract configuration
xy = configStruct.xy;
dmat = configStruct.dmat;
popSize = configStruct.popSize;
showProg = configStruct.showProg;
showResult = configStruct.showResult;
showWaitbar = configStruct.showWaitbar;
if isempty(dmat)
nPoints = size(xy,1);
a = meshgrid(1:nPoints);
dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),nPoints,nPoints);
end
% Verify Inputs
[N,dims] = size(xy);
[nr,nc] = size(dmat);
if N ~= nr || N ~= nc
error('Invalid XY or DMAT inputs!')
end
n = N;
% Sanity Checks
popSize = max(1,min(n,round(real(popSize(1)))));
showProg = logical(showProg(1));
showResult = logical(showResult(1));
showWaitbar = logical(showWaitbar(1));
% Initialize the Population
pop = zeros(popSize,n);
% Run the NN
distHistory = zeros(1,popSize);
if showProg
figure('Name','TSP_NN | Current Solution','Numbertitle','off');
hAx = gca;
end
if showWaitbar
hWait = waitbar(0,'Searching for near-optimal solution ...');
end
for p = 1:popSize
d = 0;
thisRte = zeros(1,n);
visited = zeros(1,n);
I = p;
visited(I) = 1;
thisRte(1) = I;
for k = 2:n
dists = dmat(I,:);
dists(logical(visited)) = NaN;
dMin = min(dists(~visited));
J = find(dists == dMin,1);
visited(J) = 1;
thisRte(k) = J;
d = d + dmat(I,J);
I = J;
end
d = d + dmat(I,p);
pop(p,:) = thisRte;
distHistory(p) = d;
if showProg
% Plot the Current Route
rte = thisRte([1:n 1]);
if dims > 2, plot3(hAx,xy(rte,1),xy(rte,2),xy(rte,3),'r.-');
else plot(hAx,xy(rte,1),xy(rte,2),'r.-'); end
title(hAx,sprintf('Total Distance = %1.4f',distHistory(p)));
drawnow;
end
% Update the waitbar
if showWaitbar && ~mod(p,ceil(popSize/325))
waitbar(p/popSize,hWait);
end
end
if showWaitbar
close(hWait);
end
% Find the Minimum Distance Route
[minDist,index] = min(distHistory);
optRoute = pop(index,:);
up4034
4.仿真结果
由于TSP问题是一个NP-hard问题,对于大规模实例,找到最优解可能需要很长时间。因此,通常会使用近似算法或启发式算法来求解TSP问题。这些算法包括最近邻算法、贪心算法、遗传算法、模拟退火算法等。每种算法都有其优点和局限性,选择哪种算法取决于问题的规模和求解精度要求。