目录
本专题研究聚焦人工智能应用技术,阐述其在多领域的应用现状,剖析技术挑战与未来发展趋势。人工智能凭借机器学习、深度学习等核心技术,已在医疗、交通、金融等行业取得显著成效,推动各领域智能化变革。未来,人工智能将朝着多模态融合、强化学习与迁移学习协同发展等方向演进,为社会经济发展带来更深远影响。
1. AI核心技术
人工智能(AI)应用技术的核心依赖于以下关键领域的研究与突破:
1.机器学习(Machine Learning)
机器学习是人工智能的基础技术之一,它使计算机能够通过数据进行学习,自动构建模型以进行预测和决策。常见的机器学习算法包括决策树、支持向量机、朴素贝叶斯等。例如在图像识别中,通过大量图像数据训练模型,让计算机学习不同图像特征,从而实现对新图像的分类识别,如识别猫、狗等不同动物的图像。
监督学习:用于分类、回归(如图像识别、金融预测)。
无监督学习:聚类、降维(如用户行为分析)。
强化学习:动态决策优化(如AlphaGo、自动驾驶)。
2.深度学习(Deep Learning)
深度学习是机器学习的一个分支领域,基于深度神经网络实现。它通过构建多层神经网络,自动从大量数据中提取复杂特征。在语音识别领域,深度学习模型能够对语音信号进行深层次分析,准确识别出语音内容,像智能语音助手 Siri、小爱同学等,依靠深度学习技术实现了对用户语音指令的高效理解和响应。
神经网络架构:CNN(图像)、RNN(时序数据)、Transformer(自然语言处理)。
预训练大模型:如GPT-4、BERT,支持多任务泛化。
3.自然语言处理(NLP)
自然语言处理旨在让计算机理解和处理人类自然语言。它涵盖了机器翻译、文本分类、情感分析等任务。例如在机器翻译中,利用自然语言处理技术将一种语言的文本准确翻译成另一种语言,打破语言交流障碍,促进国际间的信息流通与合作。
语义理解:情感分析、机器翻译(如ChatGPT,豆包,DeepSeek)。
生成技术:文本、代码、对话生成。
4.计算机视觉(Computer Vision)
计算机视觉是一门研究如何让计算机 “看” 懂图像和视频内容的技术学科,主要目标是使计算机能够理解、分析和解释视觉信息,从而实现与人类视觉系统类似的功能。
目标检测:YOLOv2~v11系列、Faster R-CNN。
图像生成:GAN、Diffusion模型(如DALL·E 3)。
5.边缘计算与AI芯片
边缘计算是一种将计算和数据存储靠近数据源或用户的分布式计算模式,旨在减少延迟、提高响应速度和降低网络带宽压力。
端侧AI:低功耗芯片(如NPU)支持实时推理(手机、IoT设备)。
算力优化:模型压缩、量化技术(如TensorFlow Lite)。
2. 本专题讲解内容
本专题,博主就自己的从业经历出发,分别从如下几个方面对人工智能技术做系统性的讲解。
✅1.神经网络
✅2.深度学习
✅3.强化学习
✅4.计算机视觉
✅5.自然语言处理
✅6.大语言模型
✅7.机器人,机械臂,机械狗,智能小车
✅8.AI游戏控制
✅9.大模型API调用,互联网AI应用
✅10.个性化AI应用APP开发应用
✅11.GPU显卡部署,AI芯片,边缘计算
上述11个方面,涉及算法层面(1,2,4),由博主本人变写。大模型方面由博主念书时的师兄编写(5,6)。强化学习和AI硬件方面(3,7,11),则有博主从事这方面工作的同事抽空编写。其余章节,则有博主的另外一个前同事负责编写(8,9,10)。
具体的章节内容安排,可能会根据AI发展的态势以及博主同事时间安排做增加或者删减。
3. 本专题学习内容所涉及软硬件
这里先给出几款通用的软件,部分课题方向,会根据实际用到的软件,单独在对应的章节中列出。此外,相关软件的下载地址会在对应的文章中提出下载链接。
✅1.软件
MATLAB2022a/Matlab2024b
Vivado2019.2
PyCharm Community Edition 2023.3.2
Anaconda Prompt (Anaconda3)
VMware Workstation Pro
ubuntu-20.04.2
✅2.硬件
Xilinx(Amd)FPGA相关芯片
瑞芯微RK3588