强化学习课程学习(2)——必备数学基础集锦


在了解了深度学习的基本理论以后,可以开始不断的去深入了解背后的原理是什么。为什么图片能被计算机读取?为什么我们可以用CNN对成千上万中图片进行分类,这背后的原理是什么?在了解原理之前,因为无论是深度学习还是机器学习,背后都是有一些数学原理和公式推导的,所以掌握必备的数学知识必不可少,在加入百度AI Studio开展的强化学习的课程的过程中,百度大佬提供了这些以后需要用到的数学基础知识,正好罗列收藏整理下,以方便以后自己学习过程中需要的时候可以查看——

数学基础知识

数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。

下面是常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~

高等数学

1.导数定义:

导数和微分的概念
f ′ ( x 0 ) = lim ⁡ Δ x → 0   f ( x 0 + Δ x ) − f ( x 0 ) Δ x ( 1 ) f'({ {x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x} (1) f(x0)=Δx0limΔxf(x0+Δx)f(x0)1
或者:
f ′ ( x 0 ) = lim ⁡ x → x 0   f ( x ) − f ( x 0 ) x − x 0 ( 2 ) f'({ {x}_{0}})=\underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}} (2) f(x0)=xx0limxx0f(x)f(x0)2
2.左右导数导数的几何意义和物理意义

函数 f ( x ) f(x) f(x) x 0 x_0 x0处的左、右导数分别定义为:

左导数:
f ′ − ( x 0 ) = lim ⁡ Δ x → 0 −   f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 −   f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) { { {f}'}_{-}}({ {x}_{0}})=\underset{\Delta x\to { {0}^{-}}}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}},(x={ {x}_{0}}+\Delta x) f(x0)=Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0),(x=x0+Δx)
右导数:
f ′ + ( x 0 ) = lim ⁡ Δ x → 0 +   f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 +   f ( x ) − f ( x 0 ) x − x 0 { { {f}'}_{+}}({ {x}_{0}})=\underset{\Delta x\to { {0}^{+}}}{\mathop{\lim }}\,\frac{f({ {x}_{0}}+\Delta x)-f({ {x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({ {x}_{0}})}{x-{ {x}_{0}}} f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)=xx0+limxx0f(x)f(x0)
3.函数的可导性与连续性之间的关系

Th1: 函数f(x)在 x 0 x_0 x0处可微 ⇔ f ( x ) 在 x 0 处 可 导 \Leftrightarrow f(x)在x_0处可导 f(x)x0

Th2: 若 函 数 在 点 x 0 处 可 导 , 则 y = f ( x ) 在 点 x 0 处 连 续 , 反 之 则 不 成 立 。 即 函 数 连 续 不 一 定 可 导 。 若函数在点x_0处可导,则y=f(x)在点x_0处连续,反之则不成立。即函数连续不一定可导。 x0y=f(x)x0

Th3:
f ′ ( x 0 ) 存 在 存 在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) {f}'({ {x}_{0}})存在存在\Leftrightarrow { { {f}'}_{-}}({ {x}_{0}})={ { {f}'}_{+}}({ {x}_{0}}) f(x0)f(x0)=f+(x0)
4.平面曲线的切线和法线

切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-{ {y}_{0}}=f'({ {x}_{0}})(x-{ {x}_{0}}) yy0=f(x0)(xx0)
法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-{ {y}_{0}}=-\frac{1}{f'({ {x}_{0}})}(x-{ {x}_{0}}),f'({ {x}_{0}})\ne 0 yy0=f(x0)1(xx0),f(x0)=0

5.四则运算法则
设 函 数 , u = u ( x ) , v = v ( x ) ] 在 点 x 可 导 则 ( 1 ) ( u ± v ) ′ = u ′ ± v ′ d ( u ± v ) = d u ± d v ( 2 ) ( u v ) ′ = u v ′ + v u ′ d ( u v ) = u d v + v d u ( 3 ) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) d ( u v ) = v d u − u d v v 2 设函数,u=u(x),v=v(x)]在点x可导则 \\ (1) (u\pm v{)}'={u}'\pm {v}' d(u\pm v)=du\pm dv \\ (2)(uv{)}'=u{v}'+v{u}' d(uv)=udv+vdu \\ (3) (\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{ { {v}^{2}}}(v\ne 0) d(\frac{u}{v})=\frac{vdu-udv}{ { {v}^{2}}} u=u(x)v=v(x)]x(1)(u±v)=u±vd(u±v)=du±dv(2)(uv)=uv+vud(uv)=udv+vdu(3)(vu)=v2vuuv(v=0)d(vu)=v2vduudv
6.基本导数与微分表
(1) y = c ( 常 数 ) y ′ = 0 d y = 0 y=c(常数) {y}'=0 dy=0 y=cy=0dy=0
(2) y = x α ( α 为 实 数 ) y ′ = α x α − 1 d y = α x α − 1 d x y={ {x}^{\alpha }}(\alpha为实数) {y}'=\alpha { {x}^{\alpha -1}} dy=\alpha { {x}^{\alpha -1}}dx y=xα(α)y=αxα1dy=αxα1dx
(3) y = a x y ′ = a x ln ⁡ a d y = a x ln ⁡ a d x 特 例 : ( e x ) ′ = e x d ( e x ) = e x d x y={ {a}^{x}} {y}'={ {a}^{x}}\ln a dy={ {a}^{x}}\ln adx 特例: ({ { {e}}^{x}}{)}'={ { {e}}^{x}} d({ { {e}}^{x}})={ { {e}}^{x}}dx y=axy=axlnady=axlnadx:(ex)=exd(ex)=exdx

(4) y = log ⁡ a x y={ {\log }_{a}}x y=logax y ′ = 1 x ln ⁡ a {y}'=\frac{1}{x\ln a} y=xlna1

d y = 1 x ln ⁡ a d x dy=\frac{1}{x\ln a}dx dy=xlna1dx
特例: y = ln ⁡ x y=\ln x y=lnx ( ln ⁡ x ) ′ = 1 x (\ln x{)}'=\frac{1}{x} (lnx)=x1 d ( ln ⁡ x ) = 1 x d x d(\ln x)=\frac{1}{x}dx d(lnx)=x1dx

(5) y = sin ⁡ x y=\sin x y=sinx

y ′ = cos ⁡ x {y}'=\cos x y=cosx d ( sin ⁡ x ) = cos ⁡ x d x d(\sin x)=\cos xdx d(sinx)=cosxdx

(6) y = cos ⁡ x y=\cos x y=cosx

y ′ = − sin ⁡ x d ( cos ⁡ x ) = − sin ⁡ x d x {y}'=-\sin x d(\cos x)=-\sin xdx y=sinxd(cosx)=sinxdx

(7) y = tan ⁡ x y=\tan x y=tanx

y ′ = 1 cos ⁡ 2 x = sec ⁡ 2 x {y}'=\frac{1}{ { {\cos }^{2}}x}={ {\sec }^{2}}x y=cos2x1=sec2x d ( tan ⁡ x ) = sec ⁡ 2 x d x d(\tan x)={ {\sec }^{2}}xdx d(tanx)=sec2xdx
(8) y = cot ⁡ x y=\cot x y=cotx y ′ = − 1 sin ⁡ 2 x = − csc ⁡ 2 x {y}'=-\frac{1}{ { {\sin }^{2}}x}=-{ {\csc }^{2}}x y=sin2x1=csc2x d ( cot ⁡ x ) = − csc ⁡ 2 x d x d(\cot x)=-{ {\csc }^{2}}xdx d(cotx)=csc2xdx
(9) y = sec ⁡ x y=\sec x y=secx y ′ = sec ⁡ x tan ⁡ x {y}'=\sec x\tan x y=secxtanx

d ( sec ⁡ x ) = sec ⁡ x tan ⁡ x d x d(\sec x)=\sec x\tan xdx d(secx)=secxtanxdx
(10) y = csc ⁡ x y=\csc x y=cscx y ′ = − csc ⁡ x cot ⁡ x {y}'=-\csc x\cot x y=cscxcotx

d ( csc ⁡ x ) = − csc ⁡ x cot ⁡ x d x d(\csc x)=-\csc x\cot xdx d(cscx)=cscxcotxdx
(11) y = arcsin ⁡ x y=\arcsin x y=arcsinx

y ′ = 1 1 − x 2 {y}'=\frac{1}{\sqrt{1-{ {x}^{2}}}} y=1x2 1

d ( arcsin ⁡ x ) = 1 1 − x 2 d x d(\arcsin x)=\frac{1}{\sqrt{1-{ {x}^{2}}}}dx d(arcsinx)=1x2 1dx
(12) y = arccos ⁡ x y=\arccos x y=arccosx

y ′ = − 1 1 − x 2 {y}'=-\frac{1}{\sqrt{1-{ {x}^{2}}}} y=1x2 1 d ( arccos ⁡ x ) = − 1 1 − x 2 d x d(\arccos x)=-\frac{1}{\sqrt{1-{ {x}^{2}}}}dx d(arccosx)=1x2 1dx

(13) y = arctan ⁡ x y=\arctan x y=arctanx

y ′ = 1 1 + x 2 {y}'=\frac{1}{1+{ {x}^{2}}} y=1+x21 d ( arctan ⁡ x ) = 1 1 + x 2 d x d(\arctan x)=\frac{1}{1+{ {x}^{2}}}dx d(arctanx)=1+x21dx

(14) y = arc ⁡ cot ⁡ x y=\operatorname{arc}\cot x y=arccotx

y ′ = − 1 1 + x 2 {y}'=-\frac{1}{1+{ {x}^{2}}} y=1+x21

d ( arc ⁡ cot ⁡ x ) = − 1 1 + x 2 d x d(\operatorname{arc}\cot x)=-\frac{1}{1+{ {x}^{2}}}dx d(arccotx)=1+x21dx
(15) y = s h x y=shx y=shx

y ′ = c h x {y}'=chx y=chx d ( s h x ) = c h x d x d(shx)=chxdx d(shx)=chxdx

(16) y = c h x y=chx y=chx

y ′ = s h x {y}'=shx y=shx d ( c h x ) = s h x d x d(chx)=shxdx d(chx)=shxdx

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设 y = f ( x ) 在 点 x 的 某 邻 域 内 单 调 连 续 , 在 点 x 处 可 导 且 f ′ ( x ) ≠ 0 , 则 其 反 函 数 在 点 x 所 对 应 的 y 处 可 导 , 并 且 有 d y d x = 1 d x d y 设y=f(x)在点x的某邻域内单调连续,在点x处可导且{f}'(x)\ne 0,则其反函数在点x所对应的y处可导,并且有\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} y=f(x)xxf(x)=0xydxdy=dydx1
(2) 复合函数的运算法则: 若 μ = φ ( x ) 在 点 x 可 导 , 而 y = f ( μ ) 在 对 应 点 μ ( μ = φ ( x ) ) 可 导 , 则 复 合 函 数 y = f ( φ ( x ) ) 在 点 x 可 导 , 且 y ′ = f ′ ( μ ) ⋅ φ ′ ( x ) 若 \mu =\varphi(x) 在点x可导,而y=f(\mu)在对应点\mu(\mu =\varphi (x))可导,则复合函数y=f(\varphi (x))在点x可导,且{y}'={f}'(\mu )\cdot {\varphi }'(x) μ=φ(x)x,y=f(μ)μ(μ=φ(x)),y=f(φ(x))x,y=f(μ)φ(x)
(3) 隐 函 数 导 数 d y d x 的 求 法 一 般 有 三 种 方 法 : 1 ) 方 程 两 边 对 x 求 导 , 要 记 住 y 是 x 的 函 数 , 则 y 的 函 数 是 x 的 复 合 函 数 . 例 如 1 y , y 2 , l n y , e y 等 均 是 x 的 复 合 函 数 . 隐函数导数\frac{dy}{dx}的求法一般有三种方法: 1)方程两边对x求导,要记住y是x的函数,则y的函数是x的复合函数.例如\frac{1}{y},{ {y}^{2}},ln y,{ { {e}}^{y}}等均是x的复合函数. dxdy1)xyxyx.y1y2lnyeyx.
对x求导应按复合函数连锁法则做.
2)公式法.由F(x,y)=0知 d y d x = − F ′ x ( x , y ) F ′ y ( x , y ) 其 中 , , 其 中 , F ′ x ( x , y ) \frac{dy}{dx}=-\frac{ { { { {F}'}}_{x}}(x,y)}{ { { { {F}'}}_{y}}(x,y)}其中,,其中,{ { {F}'}_{x}}(x,y) dxdy=Fy(x,y)Fx(x,y),Fx(x,y)
F ′ y ( x , y ) 分 别 表 示 分 别 表 示 F ( x , y ) 对 对 x 和 和 y { { {F}'}_{y}}(x,y)分别表示分别表示F(x,y)对对x和和y Fy(x,y)F(x,y)xy的偏导数
3)利用微分形式不变性

8.常用高阶导数公式

(1) ( a x )   ( n ) = a x ln ⁡ n a ( a > 0 ) ( e x )   ( n ) = e   x ({ {a}^{x}}){ {\,}^{(n)}}={ {a}^{x}}{ {\ln }^{n}}a\quad (a>{0})\quad \quad ({ { {e}}^{x}}){ {\,}^{(n)}}={e}{ {\,}^{x}} (ax)(n)=axlnna(a>0)(ex)(n)=ex
(2) ( sin ⁡ k x )   ( n ) = k n sin ⁡ ( k x + n ⋅ π 2 ) (\sin kx{)}{ {\,}^{(n)}}={ {k}^{n}}\sin (kx+n\cdot \frac{\pi }{ {2}}) (sinkx)(n)=knsin(kx+n2π)
(3) ( cos ⁡ k x )   ( n ) = k n cos ⁡ ( k x + n ⋅ π 2 ) (\cos kx{)}{ {\,}^{(n)}}={ {k}^{n}}\cos (kx+n\cdot \frac{\pi }{ {2}}) (coskx)(n)=kncos(kx+n2π)
(4) ( x m )   ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n ({ {x}^{m}}){ {\,}^{(n)}}=m(m-1)\cdots (m-n+1){ {x}^{m-n}} (xm)(n)=m(m1)(mn+1)xmn
(5) ( ln ⁡ x )   ( n ) = ( − 1 ) ( n − 1 ) ( n − 1 ) ! x n (\ln x){ {\,}^{(n)}}={ {(-{1})}^{(n-{1})}}\frac{(n-{1})!}{ { {x}^{n}}} (lnx)(n)=(1)(n1)xn(n1)!
(6)莱布尼兹公式:若 u ( x )   , v ( x ) u(x)\,,v(x) u(x),v(x) n n n阶可导,则
( u v ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) { {(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{ {u}^{(i)}}{ {v}^{(n-i)}}} (uv)(n)=i=0ncniu(i)v(ni),其中 u ( 0 ) = u { {u}^{({0})}}=u u(0)=u v ( 0 ) = v { {v}^{({0})}}=v v(0)=v

9.微分中值定理,泰勒公式

Th1:(费马定理)

若函数 f ( x ) f(x) f(x)满足条件:
(1)函数 f ( x ) f(x) f(x) x 0 { {x}_{0}} x0的某邻域内有定义,并且在此邻域内恒有
f ( x ) ≤ f ( x 0 ) f(x)\le f({ {x}_{0}}) f(x)f(x0) f ( x ) ≥ f ( x 0 ) f(x)\ge f({ {x}_{0}}) f(x)f(x0),

(2) f ( x ) f(x) f(x) x 0 { {x}_{0}} x0处可导,则有 f ′ ( x 0 ) = 0 {f}'({ {x}_{0}})=0 f(x0)=0

Th2:(罗尔定理)

设函数 f ( x ) f(x) f(x)满足条件:
(1)在闭区间 [ a , b ] [a,b] [a,b]上连续;

(2)在 ( a , b ) (a,b) (a,b)内可导;

(3) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

则在 ( a , b ) (a,b) (a,b)内一存在个$\xi $,使 f ′ ( ξ ) = 0 {f}'(\xi )=0 f(ξ)=0
Th3: (拉格朗日中值定理)

设函数 f ( x ) f(x) f(x)满足条件:
(1)在 [ a , b ] [a,b] [a,b]上连续;

(2)在 ( a , b ) (a,b) (a,b)内可导;

则在 ( a , b ) (a,b) (a,b)内一存在个 ξ \xi ξ,使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a}={f}'(\xi ) baf(b)f(a)=f(ξ)

Th4: (柯西中值定理)

设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)满足条件:
(1) 在 [ a , b ] [a,b] [a,b]上连续;

(2) 在 ( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) {f}'(x) f(x) g ′ ( x ) {g}'(x) g(x)均存在,且 g ′ ( x ) ≠ 0 {g}'(x)\ne 0 g(x)=0

则在 ( a , b ) (a,b) (a,b)内存在一个 ξ \xi ξ,使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{ {f}'(\xi )}{ {g}'(\xi )} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

10.洛必达法则
法则Ⅰ ( 0 0 \frac{0}{0} 00型)
设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim ⁡ x → x 0   f ( x ) = 0 , lim ⁡ x → x 0   g ( x ) = 0 \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to { {x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0 xx0limf(x)=0,xx0limg(x)=0;

f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) x 0 { {x}_{0}} x0的邻域内可导,(在 x 0 { {x}_{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g(x)=0;

lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{ {f}'\left( x \right)}{ {g}'\left( x \right)} xx0limg(x)f(x)存在(或$\infty $)。

则:
lim ⁡ x → x 0   f ( x ) g ( x ) = lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{ {f}'\left( x \right)}{ {g}'\left( x \right)} xx0limg(x)f(x)=xx0limg(x)f(x)
法则 I ′ { {I}'} I ( 0 0 \frac{0}{0} 00型)设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim ⁡ x → ∞   f ( x ) = 0 , lim ⁡ x → ∞   g ( x ) = 0 \underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0 xlimf(x)=0,xlimg(x)=0;

存在一个 X > 0 X>0 X>0,当 ∣ x ∣ > X \left| x \right|>X x>X时, f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)可导,且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g(x)=0; lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{ {f}'\left( x \right)}{ {g}'\left( x \right)} xx0limg(x)f(x)存在(或$\infty $)。

lim ⁡ x → x 0   f ( x ) g ( x ) = lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{ {f}'\left( x \right)}{ {g}'\left( x \right)} xx0limg(x)f(x)=xx0limg(x)f(x)
法则Ⅱ( ∞ ∞ \frac{\infty }{\infty } 型) 设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) 满足条件:
lim ⁡ x → x 0   f ( x ) = ∞ , lim ⁡ x → x 0   g ( x ) = ∞ \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty,\underset{x\to { {x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty xx0limf(x)=,xx0limg(x)=;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) x 0 { {x}_{0}} x0 的邻域内可导(在 x 0 { {x}_{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g(x)=0; lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{ {f}'\left( x \right)}{ {g}'\left( x \right)} xx0limg(x)f(x) 存在(或$\infty ) 。 则 )。 则 ) lim ⁡ x → x 0   f ( x ) g ( x ) = lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{ {f}'\left( x \right)}{ {g}'\left( x \right)} xx0limg(x)f(x)=xx0limg(x)f(x)$ 同理法则 I I ′ {I{I}'} II ( ∞ ∞ \frac{\infty }{\infty } 型)仿法则 I ′ { {I}'} I 可写出。

11.泰勒公式

设函数 f ( x ) f(x) f(x)在点 x 0 { {x}_{0}} x0处的某邻域内具有 n + 1 n+1 n+1阶导数,则对该邻域内异于 x 0 { {x}_{0}} x0的任意点 x x x,在 x 0 { {x}_{0}} x0 x x x之间至少存在
一个 ξ \xi ξ,使得:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ f(x)=f({ {x}_{0}})+{f}'({ {x}_{0}})(x-{ {x}_{0}})+\frac{1}{2!}{f}''({ {x}_{0}}){ {(x-{ {x}_{0}})}^{2}}+\cdots f(x)=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2+
+ f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) +\frac{ { {f}^{(n)}}({ {x}_{0}})}{n!}{ {(x-{ {x}_{0}})}^{n}}+{ {R}_{n}}(x) +n!f(n)(x0)(xx0)n+Rn(x)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 { {R}_{n}}(x)=\frac{ { {f}^{(n+1)}}(\xi )}{(n+1)!}{ {(x-{ {x}_{0}})}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1称为 f ( x ) f(x) f(x)在点 x 0 { {x}_{0}} x0处的 n n n阶泰勒余项。

x 0 = 0 { {x}_{0}}=0 x0=0,则 n n n阶泰勒公式
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){ {x}^{2}}+\cdots +\frac{ { {f}^{(n)}}(0)}{n!}{ {x}^{n}}+{ {R}_{n}}(x) f(x)=f(0)+f(0)x+2!1f(0)x2++n!f(n)(0)xn+Rn(x)……(1)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 { {R}_{n}}(x)=\frac{ { {f}^{(n+1)}}(\xi )}{(n+1)!}{ {x}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)xn+1,$\xi 在 0 与 在0与 0x$之间.(1)式称为麦克劳林公式

常用五种函数在 x 0 = 0 { {x}_{0}}=0 x0=0处的泰勒公式

(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ { { {e}}^{x}}=1+x+\frac{1}{2!}{ {x}^{2}}+\cdots +\frac{1}{n!}{ {x}^{n}}+\frac{ { {x}^{n+1}}}{(n+1)!}{ {e}^{\xi }} ex=1+x+2!1x2++n!1xn+(n+1)!xn+1eξ

= 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) =1+x+\frac{1}{2!}{ {x}^{2}}+\cdots +\frac{1}{n!}{ {x}^{n}}+o({ {x}^{n}}) =1+x+2!1x2++n!1xn+o(xn)

(2) sin ⁡ x = x − 1 3 ! x 3 + ⋯ + x n n ! sin ⁡ n π 2 + x n + 1 ( n + 1 ) ! sin ⁡ ( ξ + n + 1 2 π ) \sin x=x-\frac{1}{3!}{ {x}^{3}}+\cdots +\frac{ { {x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{ { {x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi ) sinx=x3!1x3++n!xnsin2nπ+(n+1)!xn+1sin(ξ+

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值