在了解了深度学习的基本理论以后,可以开始不断的去深入了解背后的原理是什么。为什么图片能被计算机读取?为什么我们可以用CNN对成千上万中图片进行分类,这背后的原理是什么?在了解原理之前,因为无论是深度学习还是机器学习,背后都是有一些数学原理和公式推导的,所以掌握必备的数学知识必不可少,在加入百度AI Studio开展的强化学习的课程的过程中,百度大佬提供了这些以后需要用到的数学基础知识,正好罗列收藏整理下,以方便以后自己学习过程中需要的时候可以查看——
数学基础知识
数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。
下面是常见的一些数学基础概念,建议大家收藏后再仔细阅读,遇到不懂的概念可以直接在这里查~
高等数学
1.导数定义:
导数和微分的概念
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ( 1 ) f'({
{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({
{x}_{0}}+\Delta x)-f({
{x}_{0}})}{\Delta x} (1) f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)(1)
或者:
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 ( 2 ) f'({
{x}_{0}})=\underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({
{x}_{0}})}{x-{
{x}_{0}}} (2) f′(x0)=x→x0limx−x0f(x)−f(x0)(2)
2.左右导数导数的几何意义和物理意义
函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处的左、右导数分别定义为:
左导数:
f ′ − ( x 0 ) = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) {
{
{f}'}_{-}}({
{x}_{0}})=\underset{\Delta x\to {
{0}^{-}}}{\mathop{\lim }}\,\frac{f({
{x}_{0}}+\Delta x)-f({
{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({
{x}_{0}})}{x-{
{x}_{0}}},(x={
{x}_{0}}+\Delta x) f′−(x0)=Δx→0−limΔxf(x0+Δx)−f(x0)=x→x0−limx−x0f(x)−f(x0),(x=x0+Δx)
右导数:
f ′ + ( x 0 ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 {
{
{f}'}_{+}}({
{x}_{0}})=\underset{\Delta x\to {
{0}^{+}}}{\mathop{\lim }}\,\frac{f({
{x}_{0}}+\Delta x)-f({
{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({
{x}_{0}})}{x-{
{x}_{0}}} f′+(x0)=Δx→0+limΔxf(x0+Δx)−f(x0)=x→x0+limx−x0f(x)−f(x0)
3.函数的可导性与连续性之间的关系
Th1: 函数f(x)在 x 0 x_0 x0处可微 ⇔ f ( x ) 在 x 0 处 可 导 \Leftrightarrow f(x)在x_0处可导 ⇔f(x)在x0处可导
Th2: 若 函 数 在 点 x 0 处 可 导 , 则 y = f ( x ) 在 点 x 0 处 连 续 , 反 之 则 不 成 立 。 即 函 数 连 续 不 一 定 可 导 。 若函数在点x_0处可导,则y=f(x)在点x_0处连续,反之则不成立。即函数连续不一定可导。 若函数在点x0处可导,则y=f(x)在点x0处连续,反之则不成立。即函数连续不一定可导。
Th3:
f ′ ( x 0 ) 存 在 存 在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) {f}'({
{x}_{0}})存在存在\Leftrightarrow {
{
{f}'}_{-}}({
{x}_{0}})={
{
{f}'}_{+}}({
{x}_{0}}) f′(x0)存在存在⇔f′−(x0)=f′+(x0)
4.平面曲线的切线和法线
切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-{
{y}_{0}}=f'({
{x}_{0}})(x-{
{x}_{0}}) y−y0=f′(x0)(x−x0)
法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-{
{y}_{0}}=-\frac{1}{f'({
{x}_{0}})}(x-{
{x}_{0}}),f'({
{x}_{0}})\ne 0 y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.四则运算法则
设 函 数 , u = u ( x ) , v = v ( x ) ] 在 点 x 可 导 则 ( 1 ) ( u ± v ) ′ = u ′ ± v ′ d ( u ± v ) = d u ± d v ( 2 ) ( u v ) ′ = u v ′ + v u ′ d ( u v ) = u d v + v d u ( 3 ) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) d ( u v ) = v d u − u d v v 2 设函数,u=u(x),v=v(x)]在点x可导则 \\ (1) (u\pm v{)}'={u}'\pm {v}' d(u\pm v)=du\pm dv \\ (2)(uv{)}'=u{v}'+v{u}' d(uv)=udv+vdu \\ (3) (\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{
{
{v}^{2}}}(v\ne 0) d(\frac{u}{v})=\frac{vdu-udv}{
{
{v}^{2}}} 设函数,u=u(x),v=v(x)]在点x可导则(1)(u±v)′=u′±v′d(u±v)=du±dv(2)(uv)′=uv′+vu′d(uv)=udv+vdu(3)(vu)′=v2vu′−uv′(v=0)d(vu)=v2vdu−udv
6.基本导数与微分表
(1) y = c ( 常 数 ) y ′ = 0 d y = 0 y=c(常数) {y}'=0 dy=0 y=c(常数)y′=0dy=0
(2) y = x α ( α 为 实 数 ) y ′ = α x α − 1 d y = α x α − 1 d x y={
{x}^{\alpha }}(\alpha为实数) {y}'=\alpha {
{x}^{\alpha -1}} dy=\alpha {
{x}^{\alpha -1}}dx y=xα(α为实数)y′=αxα−1dy=αxα−1dx
(3) y = a x y ′ = a x ln a d y = a x ln a d x 特 例 : ( e x ) ′ = e x d ( e x ) = e x d x y={
{a}^{x}} {y}'={
{a}^{x}}\ln a dy={
{a}^{x}}\ln adx 特例: ({
{
{e}}^{x}}{)}'={
{
{e}}^{x}} d({
{
{e}}^{x}})={
{
{e}}^{x}}dx y=axy′=axlnady=axlnadx特例:(ex)′=exd(ex)=exdx
(4) y = log a x y={ {\log }_{a}}x y=logax y ′ = 1 x ln a {y}'=\frac{1}{x\ln a} y′=xlna1
d y = 1 x ln a d x dy=\frac{1}{x\ln a}dx dy=xlna1dx
特例: y = ln x y=\ln x y=lnx ( ln x ) ′ = 1 x (\ln x{)}'=\frac{1}{x} (lnx)′=x1 d ( ln x ) = 1 x d x d(\ln x)=\frac{1}{x}dx d(lnx)=x1dx
(5) y = sin x y=\sin x y=sinx
y ′ = cos x {y}'=\cos x y′=cosx d ( sin x ) = cos x d x d(\sin x)=\cos xdx d(sinx)=cosxdx
(6) y = cos x y=\cos x y=cosx
y ′ = − sin x d ( cos x ) = − sin x d x {y}'=-\sin x d(\cos x)=-\sin xdx y′=−sinxd(cosx)=−sinxdx
(7) y = tan x y=\tan x y=tanx
y ′ = 1 cos 2 x = sec 2 x {y}'=\frac{1}{
{
{\cos }^{2}}x}={
{\sec }^{2}}x y′=cos2x1=sec2x d ( tan x ) = sec 2 x d x d(\tan x)={
{\sec }^{2}}xdx d(tanx)=sec2xdx
(8) y = cot x y=\cot x y=cotx y ′ = − 1 sin 2 x = − csc 2 x {y}'=-\frac{1}{
{
{\sin }^{2}}x}=-{
{\csc }^{2}}x y′=−sin2x1=−csc2x d ( cot x ) = − csc 2 x d x d(\cot x)=-{
{\csc }^{2}}xdx d(cotx)=−csc2xdx
(9) y = sec x y=\sec x y=secx y ′ = sec x tan x {y}'=\sec x\tan x y′=secxtanx
d ( sec x ) = sec x tan x d x d(\sec x)=\sec x\tan xdx d(secx)=secxtanxdx
(10) y = csc x y=\csc x y=cscx y ′ = − csc x cot x {y}'=-\csc x\cot x y′=−cscxcotx
d ( csc x ) = − csc x cot x d x d(\csc x)=-\csc x\cot xdx d(cscx)=−cscxcotxdx
(11) y = arcsin x y=\arcsin x y=arcsinx
y ′ = 1 1 − x 2 {y}'=\frac{1}{\sqrt{1-{ {x}^{2}}}} y′=1−x21
d ( arcsin x ) = 1 1 − x 2 d x d(\arcsin x)=\frac{1}{\sqrt{1-{
{x}^{2}}}}dx d(arcsinx)=1−x21dx
(12) y = arccos x y=\arccos x y=arccosx
y ′ = − 1 1 − x 2 {y}'=-\frac{1}{\sqrt{1-{ {x}^{2}}}} y′=−1−x21 d ( arccos x ) = − 1 1 − x 2 d x d(\arccos x)=-\frac{1}{\sqrt{1-{ {x}^{2}}}}dx d(arccosx)=−1−x21dx
(13) y = arctan x y=\arctan x y=arctanx
y ′ = 1 1 + x 2 {y}'=\frac{1}{1+{ {x}^{2}}} y′=1+x21 d ( arctan x ) = 1 1 + x 2 d x d(\arctan x)=\frac{1}{1+{ {x}^{2}}}dx d(arctanx)=1+x21dx
(14) y = arc cot x y=\operatorname{arc}\cot x y=arccotx
y ′ = − 1 1 + x 2 {y}'=-\frac{1}{1+{ {x}^{2}}} y′=−1+x21
d ( arc cot x ) = − 1 1 + x 2 d x d(\operatorname{arc}\cot x)=-\frac{1}{1+{
{x}^{2}}}dx d(arccotx)=−1+x21dx
(15) y = s h x y=shx y=shx
y ′ = c h x {y}'=chx y′=chx d ( s h x ) = c h x d x d(shx)=chxdx d(shx)=chxdx
(16) y = c h x y=chx y=chx
y ′ = s h x {y}'=shx y′=shx d ( c h x ) = s h x d x d(chx)=shxdx d(chx)=shxdx
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则: 设 y = f ( x ) 在 点 x 的 某 邻 域 内 单 调 连 续 , 在 点 x 处 可 导 且 f ′ ( x ) ≠ 0 , 则 其 反 函 数 在 点 x 所 对 应 的 y 处 可 导 , 并 且 有 d y d x = 1 d x d y 设y=f(x)在点x的某邻域内单调连续,在点x处可导且{f}'(x)\ne 0,则其反函数在点x所对应的y处可导,并且有\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} 设y=f(x)在点x的某邻域内单调连续,在点x处可导且f′(x)=0,则其反函数在点x所对应的y处可导,并且有dxdy=dydx1
(2) 复合函数的运算法则: 若 μ = φ ( x ) 在 点 x 可 导 , 而 y = f ( μ ) 在 对 应 点 μ ( μ = φ ( x ) ) 可 导 , 则 复 合 函 数 y = f ( φ ( x ) ) 在 点 x 可 导 , 且 y ′ = f ′ ( μ ) ⋅ φ ′ ( x ) 若 \mu =\varphi(x) 在点x可导,而y=f(\mu)在对应点\mu(\mu =\varphi (x))可导,则复合函数y=f(\varphi (x))在点x可导,且{y}'={f}'(\mu )\cdot {\varphi }'(x) 若μ=φ(x)在点x可导,而y=f(μ)在对应点μ(μ=φ(x))可导,则复合函数y=f(φ(x))在点x可导,且y′=f′(μ)⋅φ′(x)
(3) 隐 函 数 导 数 d y d x 的 求 法 一 般 有 三 种 方 法 : 1 ) 方 程 两 边 对 x 求 导 , 要 记 住 y 是 x 的 函 数 , 则 y 的 函 数 是 x 的 复 合 函 数 . 例 如 1 y , y 2 , l n y , e y 等 均 是 x 的 复 合 函 数 . 隐函数导数\frac{dy}{dx}的求法一般有三种方法: 1)方程两边对x求导,要记住y是x的函数,则y的函数是x的复合函数.例如\frac{1}{y},{
{y}^{2}},ln y,{
{
{e}}^{y}}等均是x的复合函数. 隐函数导数dxdy的求法一般有三种方法:1)方程两边对x求导,要记住y是x的函数,则y的函数是x的复合函数.例如y1,y2,lny,ey等均是x的复合函数.
对x求导应按复合函数连锁法则做.
2)公式法.由F(x,y)=0知 d y d x = − F ′ x ( x , y ) F ′ y ( x , y ) 其 中 , , 其 中 , F ′ x ( x , y ) \frac{dy}{dx}=-\frac{
{
{
{
{F}'}}_{x}}(x,y)}{
{
{
{
{F}'}}_{y}}(x,y)}其中,,其中,{
{
{F}'}_{x}}(x,y) dxdy=−F′y(x,y)F′x(x,y)其中,,其中,F′x(x,y),
F ′ y ( x , y ) 分 别 表 示 分 别 表 示 F ( x , y ) 对 对 x 和 和 y {
{
{F}'}_{y}}(x,y)分别表示分别表示F(x,y)对对x和和y F′y(x,y)分别表示分别表示F(x,y)对对x和和y的偏导数
3)利用微分形式不变性
8.常用高阶导数公式
(1) ( a x ) ( n ) = a x ln n a ( a > 0 ) ( e x ) ( n ) = e x ({
{a}^{x}}){
{\,}^{(n)}}={
{a}^{x}}{
{\ln }^{n}}a\quad (a>{0})\quad \quad ({
{
{e}}^{x}}){
{\,}^{(n)}}={e}{
{\,}^{x}} (ax)(n)=axlnna(a>0)(ex)(n)=ex
(2) ( sin k x ) ( n ) = k n sin ( k x + n ⋅ π 2 ) (\sin kx{)}{
{\,}^{(n)}}={
{k}^{n}}\sin (kx+n\cdot \frac{\pi }{
{2}}) (sinkx)(n)=knsin(kx+n⋅2π)
(3) ( cos k x ) ( n ) = k n cos ( k x + n ⋅ π 2 ) (\cos kx{)}{
{\,}^{(n)}}={
{k}^{n}}\cos (kx+n\cdot \frac{\pi }{
{2}}) (coskx)(n)=kncos(kx+n⋅2π)
(4) ( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n ({
{x}^{m}}){
{\,}^{(n)}}=m(m-1)\cdots (m-n+1){
{x}^{m-n}} (xm)(n)=m(m−1)⋯(m−n+1)xm−n
(5) ( ln x ) ( n ) = ( − 1 ) ( n − 1 ) ( n − 1 ) ! x n (\ln x){
{\,}^{(n)}}={
{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{
{
{x}^{n}}} (lnx)(n)=(−1)(n−1)xn(n−1)!
(6)莱布尼兹公式:若 u ( x ) , v ( x ) u(x)\,,v(x) u(x),v(x)均 n n n阶可导,则
( u v ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) {
{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{
{u}^{(i)}}{
{v}^{(n-i)}}} (uv)(n)=i=0∑ncniu(i)v(n−i),其中 u ( 0 ) = u {
{u}^{({0})}}=u u(0)=u, v ( 0 ) = v {
{v}^{({0})}}=v v(0)=v
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数 f ( x ) f(x) f(x)满足条件:
(1)函数 f ( x ) f(x) f(x)在 x 0 {
{x}_{0}} x0的某邻域内有定义,并且在此邻域内恒有
f ( x ) ≤ f ( x 0 ) f(x)\le f({
{x}_{0}}) f(x)≤f(x0)或 f ( x ) ≥ f ( x 0 ) f(x)\ge f({
{x}_{0}}) f(x)≥f(x0),
(2) f ( x ) f(x) f(x)在 x 0 { {x}_{0}} x0处可导,则有 f ′ ( x 0 ) = 0 {f}'({ {x}_{0}})=0 f′(x0)=0
Th2:(罗尔定理)
设函数 f ( x ) f(x) f(x)满足条件:
(1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;
(3) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b);
则在 ( a , b ) (a,b) (a,b)内一存在个$\xi $,使 f ′ ( ξ ) = 0 {f}'(\xi )=0 f′(ξ)=0
Th3: (拉格朗日中值定理)
设函数 f ( x ) f(x) f(x)满足条件:
(1)在 [ a , b ] [a,b] [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;
则在 ( a , b ) (a,b) (a,b)内一存在个 ξ \xi ξ,使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a}={f}'(\xi ) b−af(b)−f(a)=f′(ξ)
Th4: (柯西中值定理)
设函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x)满足条件:
(1) 在 [ a , b ] [a,b] [a,b]上连续;
(2) 在 ( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) {f}'(x) f′(x), g ′ ( x ) {g}'(x) g′(x)均存在,且 g ′ ( x ) ≠ 0 {g}'(x)\ne 0 g′(x)=0
则在 ( a , b ) (a,b) (a,b)内存在一个 ξ \xi ξ,使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{ {f}'(\xi )}{ {g}'(\xi )} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
10.洛必达法则
法则Ⅰ ( 0 0 \frac{0}{0} 00型)
设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → x 0 f ( x ) = 0 , lim x → x 0 g ( x ) = 0 \underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0 x→x0limf(x)=0,x→x0limg(x)=0;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)在 x 0 { {x}_{0}} x0的邻域内可导,(在 x 0 { {x}_{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0;
lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{ {f}'\left( x \right)}{ {g}'\left( x \right)} x→x0limg′(x)f′(x)存在(或$\infty $)。
则:
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,\frac{
{f}'\left( x \right)}{
{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)。
法则 I ′ {
{I}'} I′ ( 0 0 \frac{0}{0} 00型)设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → ∞ f ( x ) = 0 , lim x → ∞ g ( x ) = 0 \underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0 x→∞limf(x)=0,x→∞limg(x)=0;
存在一个 X > 0 X>0 X>0,当 ∣ x ∣ > X \left| x \right|>X ∣x∣>X时, f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)可导,且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0; lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to { {x}_{0}}}{\mathop{\lim }}\,\frac{ {f}'\left( x \right)}{ {g}'\left( x \right)} x→x0limg′(x)f′(x)存在(或$\infty $)。
则 lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,\frac{
{f}'\left( x \right)}{
{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
法则Ⅱ( ∞ ∞ \frac{\infty }{\infty } ∞∞ 型) 设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) 满足条件:
lim x → x 0 f ( x ) = ∞ , lim x → x 0 g ( x ) = ∞ \underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty,\underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty x→x0limf(x)=∞,x→x0limg(x)=∞;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) 在 x 0 {
{x}_{0}} x0 的邻域内可导(在 x 0 {
{x}_{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0; lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,\frac{
{f}'\left( x \right)}{
{g}'\left( x \right)} x→x0limg′(x)f′(x) 存在(或$\infty ) 。 则 )。 则 )。则 lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {
{x}_{0}}}{\mathop{\lim }}\,\frac{
{f}'\left( x \right)}{
{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)$ 同理法则 I I ′ {I{I}'} II′ ( ∞ ∞ \frac{\infty }{\infty } ∞∞ 型)仿法则 I ′ {
{I}'} I′ 可写出。
11.泰勒公式
设函数 f ( x ) f(x) f(x)在点 x 0 {
{x}_{0}} x0处的某邻域内具有 n + 1 n+1 n+1阶导数,则对该邻域内异于 x 0 {
{x}_{0}} x0的任意点 x x x,在 x 0 {
{x}_{0}} x0与 x x x之间至少存在
一个 ξ \xi ξ,使得:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ f(x)=f({
{x}_{0}})+{f}'({
{x}_{0}})(x-{
{x}_{0}})+\frac{1}{2!}{f}''({
{x}_{0}}){
{(x-{
{x}_{0}})}^{2}}+\cdots f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯
+ f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) +\frac{
{
{f}^{(n)}}({
{x}_{0}})}{n!}{
{(x-{
{x}_{0}})}^{n}}+{
{R}_{n}}(x) +n!f(n)(x0)(x−x0)n+Rn(x)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 {
{R}_{n}}(x)=\frac{
{
{f}^{(n+1)}}(\xi )}{(n+1)!}{
{(x-{
{x}_{0}})}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为 f ( x ) f(x) f(x)在点 x 0 {
{x}_{0}} x0处的 n n n阶泰勒余项。
令 x 0 = 0 {
{x}_{0}}=0 x0=0,则 n n n阶泰勒公式
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){
{x}^{2}}+\cdots +\frac{
{
{f}^{(n)}}(0)}{n!}{
{x}^{n}}+{
{R}_{n}}(x) f(x)=f(0)+f′(0)x+2!1f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)……(1)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 {
{R}_{n}}(x)=\frac{
{
{f}^{(n+1)}}(\xi )}{(n+1)!}{
{x}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)xn+1,$\xi 在 0 与 在0与 在0与x$之间.(1)式称为麦克劳林公式
常用五种函数在 x 0 = 0 { {x}_{0}}=0 x0=0处的泰勒公式
(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ { { {e}}^{x}}=1+x+\frac{1}{2!}{ {x}^{2}}+\cdots +\frac{1}{n!}{ {x}^{n}}+\frac{ { {x}^{n+1}}}{(n+1)!}{ {e}^{\xi }} ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ
或 = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) =1+x+\frac{1}{2!}{ {x}^{2}}+\cdots +\frac{1}{n!}{ {x}^{n}}+o({ {x}^{n}}) =1+x+2!1x2+⋯+n!1xn+o(xn)
(2) sin x = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + x n + 1 ( n + 1 ) ! sin ( ξ + n + 1 2 π ) \sin x=x-\frac{1}{3!}{ {x}^{3}}+\cdots +\frac{ { {x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{ { {x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi ) sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+