让DNA分子做决策

011f76116bf5ba646b33a19e5814ea65.jpeg

研究的概念框架(来源:原论文)

来源:环球科学

撰文 爱莉森·帕歇尔(Allison Parshall) 

翻译 董子晨曦

大脑是最典型的决策器官,它会收集和处理信息,进而做出下一步指示。它如此复杂,以至于科学家迄今仍未能揭开有关大脑的众多谜团。

我们很容易推测,处理信息需要像大脑这样复杂的系统。然而,在自然界中,许多更简单的系统也能完成类似的任务。

美国加州理工学院的分子计算研究员埃里克·温弗里(Erik Winfree)举例说,细胞通过化学信号网络决定自己何时复制或凋亡,如果考虑相变这样复杂的物理过程,甚至可以认为水分子也能“决定”自己会冻结成雪花还是冰雹。

一直以来,温弗里都对物理世界隐藏的信息处理能力很感兴趣。在近期发表于《自然》(Nature)的一项研究中,他和同事设计了一组人造DNA链,并将这些DNA链连接起来,构建出一个计算系统。这一系统与人工智能模型采用的“神经网络”算法有许多相似之处,能够实现模式识别和信息分类。

为了利用生物机制构建出类似计算机的回路,研究人员通常会选择自组装的DNA分子,这种自组装的能力来源于DNA的特异性碱基互补配对能力。这些经过特殊处理的DNA链在试管中组合并冷却后,能组装成形状可预测的镶嵌“砖块”,从而传递信息。

科学家想知道,这样的设置能否识别模式,比如通过灰度将图片分类。为了能在试管中表征图片,科学家创建了一种编码方式,其中每个图片像素都对应一个特定“形状”的DNA片段。像素亮度越高,溶液中相应的DNA片段就越多。

在溶液冷却后,DNA片段会像自组装的拼图一样聚集,形成三种可能的形状。具体形成哪种形状,取决于DNA片段混合物中不同片段的占比。爱尔兰梅努斯大学的分子计算研究员康斯坦丁·格伦·埃文斯(Constantine Glen Evans,这项研究的共同作者)解释道,每种形状都代表了一种分类。

647132d9ad60e173d0dec433cf770340.jpeg

来源:原论文

这个DNA系统可以将18张图片分为三个任意的类别,但它也可以对从未见过的图像进行分类,比如同一张图片的扭曲版本。美国芝加哥大学的物理学家阿尔温德·穆鲁根(Arvind Murugan,这项研究的共同作者)说:“就像神经网络一样,该系统可以识别图片大体上的相似性,而不能精准匹配。”

穆鲁根表示,这项研究的目的并非替代神经网络本身,而是为了揭示“物质本就具有的”计算能力。科学家很希望能在自然界的其他系统中找到类似的计算能力,而这些能力“很可能就隐藏在我们没有注意到的各种事物中”。

美国约翰·霍普金斯大学的生物分子工程师丽贝卡·舒尔曼(Rebecca Schulman,未参与这项研究)评价道:“这项工作简直太有趣了,”知晓一大群分子的互动能够模糊地储存信息,与了解神经网络的大群神经元可以存储信息一样,“都为我打开了新世界的大门。”

舒尔曼补充道,这些发现就像是对“奇异”深海生态系统的第一次窥探,尽管这一瞥稍纵即逝,“但这可能是一种召唤,让我们回过头去,再仔细看看。”

本文选自《环球科学》2024年5月刊前沿。

论文链接:https://www.nature.com/articles/s41586-023-06890-z

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

1916803bf0567607b09a056dc9bb0ea3.jpeg

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值