Sam Altman最新对谈实录:OpenAI的AI平台商业终局猜想

图片

来源:数字开物

5月13日,OpenAI CEO Sam Altman在Sequoia AI Ascent 2025活动期间接受访谈, Sam Altman回顾了公司从早期研究实验室到推出ChatGPT等革命性产品的演进历程,分享了OpenAI一路走来的关键节点、核心理念,并详细阐述了OpenAI的战略愿景,包括对核心AI订阅服务的专注、对研究路线图的乐观态度等。

对话还深入探讨了当前AI浪潮下企业转型面临的挑战与机遇,不同用户群体对AI工具的创新应用,以及OpenAI内部如何利用AI提升效率。此外,Altman还展望了OpenAI平台的未来,包括API的战略角色、开发者生态的构建、传感器数据融合的潜力、语音交互与编程能力的核心地位,分享了对更智能模型发展路径、个性化AI终极形态的思考,并对未来几年AI价值创造的领域进行了预测。

Sam Altman表示,OpenAI将专注于核心AI订阅、基础模型及核心交互界面,对当前的研究路线图感到前所未有的乐观。

Sam Altman还表达了构建统一AI平台的愿景,期望个性化AI能无缝应用于各类场景,并强调语音交互的至关重要性,认为媲美人类的语音体验能催生全新设备品类。理想的个性化AI是一个拥有海量上下文的小型推理模型,能融入用户生活的方方面面。

Sam Altman指出,重大的算法突破仍是提升模型能力最具杠杆效应的因素;此外,他还表示2025年将是AI Agent大放异彩的一年。

以下是本次对话实录

经数字开物团队编译整理

01

OpenAI探索出ChatGPT的路径

主持人提问:回顾2016年OpenAI初创时期,您是否预见到今天的成就?公司是如何规划发展里程碑,并最终在六年多后推出ChatGPT这款面向消费者的产品的?

Sam Altman:回到2016年,那时候我们就坐在这附近,大概也就14个人左右。坦白说,我没有想象过会走到今天这一步。即便那样,也像是我们当时围坐在一起看着白板讨论对策。我们当时非常像一个纯粹的研究实验室,这一点怎么强调都不为过——拥有非常坚定的信念、方向和认知,却没有真正具体的行动计划。不仅成立公司或开发产品的想法在当时看来是不可思议的,就连像大语言模型这样的具体想法也还非常遥远。我们当时在尝试玩电子游戏。现在我们在这方面已经相当擅长了。

说起来可能有点像历史的偶然,第一个消费级产品并不是ChatGPT,是DALL-E。第一个产品是API。我们经历了一些不同的事情,曾经有几个我们真正想要押注的方向。最终,正如我提到的,我们决定必须构建一个系统来看看它是否有效,而不只是在写研究论文。所以我们要看看我们是否能把一个电子游戏玩好,是否能做一个机械臂,是否能做其他一些事情。在某个阶段,有个人,最初只是一个人,后来发展成一个团队,他们对尝试做无监督学习和构建语言模型产生了浓厚的兴趣。这就催生了GPT-1,然后是GPT-2。

到了GPT-3的时候,我们一方面觉得我们做出了一些很酷的东西,但另一方面又不知道拿它来做什么。同时我们也意识到,我们需要更多的资金来继续扩大规模。我们已经完成了GPT-3,想继续开发GPT-4,正迈向一个模型研发成本高达数十亿美元的时代。想把这些纯粹作为科学实验来推进是非常困难的,除非你拥有像粒子加速器那样的设施,即便如此也不容易。所以我们开始思考,既要弄清楚这怎样才能成为一项能够支撑所需投资的业务,同时,我们感觉这东西正朝着一些真正有用的方向发展。

我们曾经以模型权重的形式发布了GPT-2,但并没有引起太大的反响。我观察到的关于公司和产品的一个普遍现象是,如果你推出一个API,它通常能带来意想不到的好处。这在许许多多的YC孵化的公司中都得到了验证。而且,如果你让某个东西的使用变得更加简单,通常也会带来巨大的益处。所以我们当时想,运行这些模型有些困难,它们的规模也越来越大。我们将去开发一些软件来高效地运行它们。然后,与其自己去打造一个产品,我们更希望其他人能找到可行的应用方向。

于是,大概是2020年6月,我们通过API发布了GPT-3。当时,全世界对此并没有太多关注,但硅谷注意到了。他们觉得,“哦,这东西有点酷,似乎预示着什么。” 接着发生了一件有些奇怪的事:我们几乎没有得到世界其他地方的任何关注。而一些初创公司的创始人则表示,“哦,这真的很酷”,甚至有些人认为这就是AGI。在我印象中,真正利用GPT-3 API建立起业务的公司,只有少数几家提供类似文案代写服务的公司。这差不多是GPT-3唯一能够跨过商业盈利门槛的应用领域。

但我们确实注意到了一个现象,这个现象最终促成了ChatGPT的诞生:尽管人们无法利用GPT-3 API构建出很多成功的商业应用,但他们非常喜欢在我们的Playground环境中与它对话。然而,它当时的聊天能力非常糟糕。那时我们还没有掌握如何运用基于人类反馈的强化学习 (RLHF) 来让它更容易进行对话。但即便如此,人们还是乐此不疲。在某种程度上,除了文案代写,这成为了API产品唯一的“杀手级”应用,也正是这一点引导我们最终开发了ChatGPT。等到ChatGPT 3.5发布的时候,可以利用API构建业务的领域大约从一个增加到了八个。但我们对于“人们就是想和模型对话”的信念变得愈发坚定。所以我们开发了DALL-E,DALL-E的表现尚可,但我们知道,特别是结合我们能够进行的微调,我们想要构建这样一个模型,这样一个能让你和模型对话的产品。我想它是在2022年11月30日推出的。如今每周有超过5亿人与它交流。

02

OpenAI持续高速迭代的关键

主持人提问:在公司规模不断扩大的同时,您是如何确保并持续提升产品迭代速度的?在过去六个月中,OpenAI推出的众多成果里,有哪些是您尤其引以为傲的?对于行业内的其他参与者,他们应如何定位以避免在OpenAI的快速发展下成为“炮灰”?

Sam Altman:我认为许多公司会犯一个错误:它们规模变大了,却没有做更多的事情。它们只是因为应该变大而变大,但仍然只推出与以往相同数量的产品。就在这时,那种“陷入泥潭”般的迟滞感就会真正显现出来。我坚信,你需要让每个人都保持忙碌,团队规模要小。相对于你拥有的人力,你需要做很多事情,否则你就会面临每次会议都有40个人参加,大家为了产品中某个微不足道的部分归谁负责而激烈争吵的局面。商界有一个古老的观察:优秀的管理者总是忙碌的,因为你不希望手下的人无所事事、虚耗光阴。但在我们公司以及许多其他公司,研究人员、工程师、产品人员几乎创造了全部价值。你希望这些人既忙碌又能产生巨大的影响力。

所以,如果公司要发展,最好能做更多的事情,否则你就会有一大群人整天待在会议室里争论、开会或者讨论些无关紧要的事。因此,我们努力让相对较少的人承担起巨大的责任。要实现这一点,方法就是多做事情。而且,我们也确实必须做很多事情,比如为了不断前进。我认为我们现在确实有机会去构建一个真正重要的互联网平台。但要做到这一点,如果我们真的想成为用户在各种不同服务中、在他们整个生命周期中、在所有这些不同主要类别以及所有我们需要设法赋能的更小类别中都会使用的个性化AI,那么这就意味着有海量的工作等着我们去完成。

现在的模型已经非常出色了。当然,它们在某些方面仍有提升空间,我们也在为此快速努力,但就目前而言,我认为ChatGPT是一款非常优秀的产品,因为它的基础模型非常强大。其他因素也很重要,但我确实为一个模型能够如此出色地完成这么多不同的任务而感到惊叹。

关于市场定位,我想大家可以这样理解我们:我们希望构建并成为人们核心的AI订阅服务以及使用这项能力的主要方式。其中一部分会体现在你在ChatGPT内部进行的操作。我们还会推出其他几个构成该订阅核心的关键部分。但最主要的是,我们希望能构建出这个越来越智能的模型。我们将拥有各种交互界面,比如未来的设备、未来类似操作系统的事物等等。然后,我们希望那种能够真正成为我们平台的API或软件开发工具包,究竟是什么,可能需要几次尝试,但我们终将实现。我希望这能在全球范围内创造出难以置信的财富,并使其他人能够在此基础上进行构建。但是,我们将专注于核心的AI订阅和模型,然后是核心的交互界面,除此之外,还会有大量其他的东西有待构建。我们会努力尝试。如果你们能提供比我们更出色的核心AI订阅产品,欢迎你们去做。那会非常棒。

03

OpenAI对AI研究路线图前所未有地乐观

主持人提问:关于近期传闻的巨额融资(例如以3400亿美元估值融资400亿美元),这反映了OpenAI怎样的高度和雄心?在研究路线图上,具体有哪些规划?您似乎更主张一步一个脚印地向前探索,而非从一个既定的长远目标倒推规划,能否详细阐述这种理念?

Sam Altman:我想我们已经宣布了我们将努力打造卓越的模型,推出优秀的产品,除此之外并没有什么宏伟蓝图。观众席里有很多OpenAI的同事,他们可以证明这一点。我们不会预先规划好一切,我非常相信你应该专注于眼前能够完成的事情。但如果你试图从某个极其复杂的目标倒推回来进行规划,那通常不会很奏效。比如我们知道我们需要海量的AI基础设施。我们知道我们需要建设大规模的AI“工厂”。我们知道我们需要持续改进模型,我们知道我们需要构建一个顶级的消费级产品以及所有相关的配套支持。但我们引以为傲的是我们非常敏捷,能够根据世界的变化灵活调整策略。

所以,我们明年要开发的产品,很可能现在根本都还没在构思阶段,我们坚信我们能够打造出一系列人们真正喜爱的产品。对此我们抱有毫不动摇的信心,我们相信我们能够构建卓越的模型。实际上,我现在对我们研究路线图的乐观程度,是前所未有的。

关于研究路线,真正智能的模型。但就眼前的具体步骤而言,我们倾向于一步一个脚印地推进。我听过有些人侃侃而谈他们那些宏伟的战略:未来要达到什么目标,然后从这个目标开始一步步倒推,先是如何颠覆世界,然后是颠覆世界之前的那个阶段是什么,再往前一步是什么,如此反复,一直倒推到我们今天的起点。我从未见过用这种方式的人能够真正取得大规模的成功。

04

大型公司因组织僵化在AI转型中落后于初创企业

现场提问:您认为大型公司在适应AI原生(无论工具运用还是产品开发)的过程中主要存在哪些认知误区,导致其创新层面落后于小型公司?您观察到年轻人使用ChatGPT有哪些令人惊讶的新奇用法?OpenAI内部是如何运用ChatGPT的,例如在代码编写方面的具体程度如何?

Sam Altman:我认为这在每一次重大的技术革命浪潮中几乎都会上演。对我而言,这丝毫不令人意外。他们所犯的错误,与他们以往一贯所犯的错误如出一辙,那就是个人会变得故步自封,组织会变得僵化不堪。如果外部环境每一两个季度就发生翻天覆地的变化,而你们的信息安全委员会依旧一年才召开一次会议,来决定批准哪些应用程序、如何将数据引入系统等事宜,那么眼睁睁看着这一切发生却无能为力,实在令人痛心。但是,这就是所谓的创造性破坏。这正是初创公司能够脱颖而出的原因。这也是整个行业向前发展的驱动力。我对大型公司进行这种变革的意愿和速度感到失望,但并不惊讶。

我的预判是,它们可能还会再挣扎几年,试图否认这种变革将颠覆一切的趋势,随后便会彻底放弃抵抗,在最后一刻仓促应战,但届时恐怕为时已晚。总的来说,初创公司往往就是这样轻松超越那些固守传统做法的企业的。这种情况也同样发生在个人身上。

比如,观察一下刚开始接触AI的人,或者您去和一位普通的20岁年轻人聊聊,看看他们是如何使用ChatGPT的。然后再去和一位普通的35岁人士交流,了解他们是如何使用ChatGPT或其他类似服务的。两者之间的差异简直是天壤之别。这让我想起了智能手机刚刚问世的年代,那时候每个孩子都能迅速上手、运用自如,而年长一些的人们则往往需要花费大约三年的时间才能掌握一些基本操作。当然,最终大家都会逐步适应。但是,当前AI工具在不同代际人群中的应用方式确实存在巨大的鸿沟,我认为大型公司的迟缓反应,不过是这种现象的又一个具体体现罢了。

关于年轻用户他们确实把ChatGPT当作一个操作系统来使用。他们有一套复杂的设置流程,能够将其接入大量文件,并且他们要么在脑海里记下了一些相当复杂的提示词,要么就是把这些提示词保存在某个地方以便随时复制粘贴。我认为这些用法本身就非常巧妙且令人印象深刻。此外还有另一种现象,那就是他们在做一些重要的人生抉择时,几乎总会先咨询ChatGPT的意见。ChatGPT掌握了他们生活中每个相关人物的完整背景资料,了解他们之间都聊过些什么,而且记忆功能在其中确实扮演了至关重要的角色。不过,总的来说,这或许是一个过于概括的看法:年长者倾向于将ChatGPT视为Google的替代品;二三十岁的年轻人可能会将其用作某种生活顾问;而大学生们则将其当作一个真正的操作系统来使用。

关于内部使用,它为我们编写了相当数量的代码。我不知道确切的数字。而且,每当人们讨论这个数字时,我都觉得这种衡量方式本身就挺傻的。单纯用代码行数来衡量是非常不合理的。或许我能说的一点比较有意义的是,它正在编写真正具有核心价值的代码。也就是说,它在编写——我不知道确切的量——但它编写的是那些真正起到决定性作用的部分。

05

未来将对传感器数据的支持更明确地内置到模型中

现场提问:如果OpenAI的未来主要聚焦于消费级市场和核心订阅服务,那么十年后为何还要继续保留并发展API业务?OpenAI是否会将为开发者社群提供并完善一个强大的开发平台作为优先战略?OpenAI是否考虑过向模型中引入如温度等传感器数据以增强其对物理世界的理解?语音交互在OpenAI的整体规划中占据何等地位,未来将如何在ChatGPT中呈现和应用?编程能力对于OpenAI的未来而言,仅仅是一个垂直应用领域,还是具有更关键的战略意义?

Sam Altman:我非常希望这一切最终能够整合为一个统一的整体。举个例子,用户应该能够使用OpenAI账户无缝登录其他各类服务。而其他服务在未来某个阶段,也应该能通过一个功能强大的软件开发工具包来灵活调用ChatGPT的用户界面。核心逻辑在于,如果您拥有一个深度了解您、掌握您的个人信息、知晓您未来希望分享哪些内容,并且全面了解您个人背景的个性化AI,那么您一定会希望能够在各种不同的应用场景中便捷地使用它。目前,我承认API的现有版本距离这一愿景还有相当大的差距。但我坚信我们能够最终实现这一目标。

关于开发者平台我认为,我期望达到的是一种中间形态,即未来互联网可能会涌现出一种类似于HTTP协议级别的新型基础协议。在这个协议下,各种服务和数据可以实现联合,并被分解为更细小的、可组合的组件。AI Agent将能够持续地暴露和调用不同的工具集,而身份验证、支付、数据传输等核心功能,都将内建于这个所有参与方均能信任的底层协议之上,从而实现万物互联互通。目前我还无法完全清晰地描绘出它的具体形态,但它正如同拨云见日般逐渐明朗起来。随着我们对它的理解日益加深,我们可能还需要经历几次迭代演进才能最终实现这一构想,但这正是我所期望看到的未来图景。

关于传感器数据实际上,这方面已经有很多实践了。人们会将传感器数据,通过各种方式,比如构建特定的应用程序接口,将传感器数据直接输入到API调用中,例如调用某个版本的API接口。在某些特定的应用场景下,这种方法的表现确实非常出色。我想指出的是,我们最新的模型在处理这类数据方面似乎已经做得相当不错了,这与早期模型的情况有所不同。因此,我们未来很有可能会在某个时间点,将对传感器数据的支持更明确地内置到模型中,但这方面的工作其实一直都在积极推进。

关于语音交互,我认为语音至关重要。坦白说,我们目前尚未打造出足够完善的语音产品。但这没关系,正如我们当初也花费了相当一段时间才研发出足够优秀的文本模型一样。我们最终会攻克这个技术难关。当我们成功做到这一点时,我相信会有非常多的人更倾向于高频使用语音交互功能。我对此深有感触,当我们最初推出当前的语音模式时,最令我印象深刻的一点是,它在传统的触摸屏交互之外,开辟了一条全新的交互路径。用户可以一边通过语音与AI对话,一边同时在手机屏幕上进行点击等操作。

我始终坚信,“语音+图形用户界面”的融合交互方面,蕴藏着巨大的创新潜力,尽管我们尚未完全破解其中的奥秘。但在此之前,我们会首先致力于将语音功能本身打磨到极致。当我们真正实现这一点时,我认为它不仅仅是为现有设备增添一项炫酷的功能,我更倾向于相信,如果我们能让语音交互体验达到真正媲美人类自然交流的水平,它将催生一个全新的智能设备品类。

编程,我认为对OpenAI的未来更为关键。编程会是这些模型运作的核心方式——现在你问ChatGPT一个问题,会得到文本回复,或许还有一张图片。但你希望得到的是一个完整的程序,希望每个回复都能生成定制化的渲染代码,至少我希望如此。你希望这些模型有能力在现实世界中有所作为。而编写代码,将是你如何驱动世界、调用各种API等等的核心。因此,编程将占据更核心的地位。我们显然也会通过我们的API和平台提供编程能力。ChatGPT应该非常擅长编写代码。是的,我认为从辅助工具到AI Agent再到贯穿始终的应用程序,这个过程会非常连贯。

06

最终理想的个性化是基于海量上下文的小型推理模型

现场提问: 在构建更智能模型的道路上,除了更多数据、更大规模的数据中心、Transformer架构和测试时计算等已知因素外,还有哪些可能被低估的关键要素?您是如何在允许顶尖人才追求深度研究与自上而下推动战略目标之间取得平衡的?OpenAI是否考虑过与学术界合作,利用大语言模型解锁人文学科和社会科学领域的新认知?您如何看待个性化定制与改进核心模型之间的关系,理想的个性化应是怎样的?

Sam Altman:这些事情中的每一件都非常困难。显然,最具杠杆效应的依然是重大的算法突破。我认为可能还存在一些能带来10倍或100倍提升的突破,虽然数量不多,但即使是一两个也意义重大。基本上就是算法、数据、算力这些主要构成要素。

关于研究管理,有些项目需要大量的协调,因此必然需要一些自上而下的统筹安排。但我认为大多数人在这方面做得过多了。要运营好人工智能研究,或者说好的研究实验室,或许还有其他方法。但是当我们创立OpenAI时,我们花了很多时间试图理解一个运营良好的研究实验室究竟是什么样的。为此,不得不回溯到很久远的过去。事实上,几乎所有能就此提供建议的人都已故去。距离上一次出现真正优秀的研究实验室,已经过去了很长时间。人们经常问我们,为什么OpenAI能够持续创新,而其他AI实验室似乎总在模仿?或者为什么某个生物实验室X做不出好成果,而另一个生物实验室Y却能?我们总是反复强调所观察到的原则,我们如何学习理解它们,以及回顾过的历史案例。然后每个人听了都说“太好了”,但接着就去另辟蹊径。我们就说,没关系,你们来寻求建议,但最终决定权在你们自己。但我发现,我们努力在研究实验室践行的这几条原则,并非我们原创,而是我们从历史上其他成功的实验室借鉴来的,对我们非常有效。而那些自以为聪明、另搞一套的人,往往都失败了,这一点非常值得注意。

关于学术合作,我们有考虑。看到人们在这些领域取得的进展,确实非常令人鼓舞。我们确实有一些学术研究项目,通过这些项目我们与研究人员合作,并进行一些定制化的工作。但大多数情况下,人们只是说:“我想要模型的访问权限”,或者“我想要基础模型的访问权限”。我认为我们在这方面做得非常好。我们工作的一个出色之处在于,我们的激励结构在很大程度上是推动模型尽可能地智能、廉价且易于获取,这极大地服务了学术界乃至整个世界。因此,我们确实有一些定制化的合作,但我们常常发现,研究人员或用户真正想要的,只是希望我们全面改进通用模型。因此,我们力求将大约90%的主要精力集中于此。

关于个性化,从某种意义上说,我认为理想的柏拉图式状态是:一个非常小巧的推理模型,拥有数万亿Token的上下文,可以将你的整个生活融入其中,模型从不需要重新训练,权重也从不针对个人定制,但该模型能够基于你的全部上下文高效推理。你生命中的每一次对话、每一本书、每一封邮件,你看过的每一件事物,都储存在里面,并连接了来自其他来源的所有数据。然后,你的生活信息不断追加到这个上下文中,你的公司也为公司的所有数据做同样的事情。目前我们还无法实现这一点。但我认为,任何其他方式都是对那种柏拉图式理想状态的折衷,而这最终才是我希望我们实现个性化定制的方式。

07

AI Agent将在2025年大放异彩

现场提问:您认为未来12个月,大部分的价值创造将来自哪些方面,例如更高级的记忆能力,还是让AI Agent完成更多任务并与现实世界互动的安全机制或协议?ChatGPT-5会比我们这里所有人都更聪明吗?经历过一些波折后,您对在场的创始人们在韧性、耐力和力量方面有什么建议?

Sam Altman:从某种意义上说,价值将持续来源于三个主要方面:建设更多的基础设施、更智能的模型,以及构建将这些技术融入社会的支撑框架。若在这些方面持续投入,其余问题便会迎刃而解。更具体而言,我倾向于认为2025年将是AI Agent大显身手的一年。尤其在编程领域,我预计它将成为主导类别。当然,也会有其他一些领域。明年,我预计更会是AI探索发现的一年,或许我们会看到AI Agent取得一些非常重大的科学发现,或者协助人类完成这些发现。我一直相信,人类历史上大部分真正可持续的经济增长,在人类足迹遍布地球之后,主要源于更先进的科学知识及其在世界范围内的应用。至于2027年,我猜测届时所有这些进展将从知识领域拓展到物理世界,机器人将从新奇事物转变为重要的经济价值创造者。但这只是我此刻的一个即兴猜测。

关于GPT-5如果你自认为比GPT-3聪明很多,那么或许你仍需努力。但我认为GPT-3已经相当聪明了。

关于创始人韧性应对起来会更容易一些。作为创始人,在创业旅程中会面临许多逆境,挑战会愈发艰难,风险也随之增高,但经历过更多挫折后,情感上的负担反而会减轻。因此,从某种意义上说,即便挑战在抽象层面变得更大、更难,但你应对挑战的能力以及逐渐建立的韧性,会在每一次经历后让你感觉更轻松。其次,我认为作为创始人所面临的巨大挑战中,最艰难的并非挑战发生的那一刻。在一家公司的发展历程中,很多事情都可能出错。在紧急关头,你会得到很多支持,可以依靠肾上腺素来运转。即便遭遇公司资金耗尽、面临倒闭这样的重大危机,也会有很多人支持你。你总能挺过去,继而开始新的征程。

我认为,在心理层面更难应对的是事后的“余波”。人们往往非常关注在危机发生的那一刻如何应对。但真正有价值的是学习如何收拾残局。关于这方面的讨论要少得多。我从未真正找到过什么好的材料可以推荐给创始人们阅读——不是关于如何在危机发生的初期(第零天、第一天或第二天)应对,而是关于在危机发生约两个月后(第60天),当你努力尝试重建时该怎么做。这正是我认为你可以实践并提升的领域。

关于本期对话

访谈发布时间:2025年5月13日 

原视频地址:https://youtu.be/ctcMA6chfDY?si=FFPqoY62Y3eEtuey

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告

(加入未来知识库,全部资料免费阅读和下载)

  1. 牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》

  2. 麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力

  3. AAAI 2025 关于人工智能研究未来研究报告

  4. 斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)

  5. 壳牌:2025 能源安全远景报告:能源与人工智能(57 页)

  6. 盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)

  7. Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)

  8. IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)

  9. DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt

  10. 联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)

  11. TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)

  12. NAVEX Global:2024 年十大风险与合规趋势报告(42 页)

  13. 《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页

  14. 2025 - 2035 年人形机器人发展趋势报告 53 页

  15. Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)

  16. 【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt

  17. Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)

  18. 谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)

  19. 【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习

  20. 《基于传感器的机器学习车辆分类》最新 170 页

  21. 美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)

  22. 罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)

  23. 兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)

  24. 康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)

  25. 国际能源署:2025 迈向核能新时代

  26. 麦肯锡:人工智能现状,组织如何重塑自身以获取价值

  27. 威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)

  28. 牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)

  29. 国际能源署(IEA):能效 2024 研究报告(127 页)

  30. Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)

  31. CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)

  32. 世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告

  33. 迈向推理时代:大型语言模型的长链推理研究综述

  34. 波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)

  35. 安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)

  36. IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)

  37. IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)

  38. CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)

  39. 《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页

  40. 《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》

  41. 全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)

  42. 美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)

  43. 艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)

  44. NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)

  45. IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)

  46. AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)

  47. 2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)

  48. 华为:2025 鸿蒙生态应用开发白皮书(133 页

  49. 《超级智能战略研究报告》

  50. 中美技术差距分析报告 2025

  51. 欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)

  52. 美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)

  53. 罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)

  54. 兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)

  55. GTI:2024 先进感知技术白皮书(36 页)

  56. AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)

  57. 安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告

  58. 威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)

  59. 兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)

  60. 哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)

  61. 德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)

  62. 奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)

  63. HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)

  64. Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)

  65. 《无人机辅助的天空地一体化网络:学习算法技术综述》

  66. 谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)

  67. 《新兴技术与风险分析:太空领域与关键基础设施》最新报告

  68. 150 页!《DeepSeek 大模型生态报告》

  69. 军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)

  70. 真格基金:2024 美国独角兽观察报告(56 页)

  71. 璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)

  72. 国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)

  73. RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)

  74. 国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)

  75. RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)

  76. 未来今日研究所 2025 年科技趋势报告第 18 版 1000 页

  77. 模拟真实世界:多模态生成模型的统一综述

  78. 中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)

  79. 浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)

  80. 人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)

  81. 大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)

  82. 北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)

  83. 欧盟委员会 人工智能与未来工作研究报告

  84. 加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用

  85. 电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)

  86. RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)

  87. FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)

  88. Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)

  89. 【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt

  90. 《21 世纪美国的主导地位:核聚变》最新报告

  91. 沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)

  92. 斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)

  93. 国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)

  94. 光子盒:2025 全球量子计算产业发展展望报告(184 页)

  95. 奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)

  96. Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)

  97. 《人类与人工智能协作的科学与艺术》284 页博士论文

  98. 《论多智能体决策的复杂性:从博弈学习到部分监控》115 页

  99. 《2025 年技术展望》56 页 slides

  100. 大语言模型在多智能体自动驾驶系统中的应用:近期进展综述

  101. 【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用

  102. 皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)

  103. 空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)

  104. Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)

  105. 北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)

  106. 北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)

  107. CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)

  108. 中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)

  109. AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值