目录
写在前面的唠叨:
最近这段时间一直在研究深度学习之类的东西,虽然如今对几种常见的神经网络都有了很好的了解,用起来也比较顺手,但是越学也越觉得瓶颈越来越明显了,最大的问题觉得还是数学基础不行,学习那些常见的模型已经把线性代数的知识捡的差不多了,而到了想自己设计模型的时候,才忽然发现微积分也是十分重要的,而这两年我都还给老师了呀T_T。所以把PRML这本书又翻了出来,推导一下里面的公式。
然而刚看到高斯分布里面的方差推导就抽了我一嘴巴,去网上查了查发现这部分推导大家写的都挺乱的,于是自己总结了一下,留作记录,省的以后在看的时候到处乱查,重新推……
归一化推导证明:
证明归一化,即证明:
首先我们将其展开:
这里将 替换掉有:
这里假设:
这个积分直接计算比较困难,但是可以绕个弯,采用极坐标的方式计算,首先我们将其求其平方:
在将其转化为极坐标,令可得: