ResNet,YOLO,U-Net

1.图像分类(ResNet)
任务定义:对整张图像进行全局类别判断,输出离散标签(如识别图像中的动物种类)。
核心原理:

  • 残差学习:通过引入残差块(Residual Block),解决深层网络训练中的梯度消失问题,允许构建超百层的网络(如ResNet-152)。
  • 跳跃连接:将输入特征直接传递到后续层,保留原始信息,提升特征复用能力。
    应用场景:
  • 通用图像分类(如ImageNet竞赛);
  • 医学影像的初步筛查(如X光片分类);
  • 作为其他任务(如目标检测)的基础特征提取网络。

2.目标检测(YOLO)
任务定义:定位图像中的目标位置(边界框)并判断其类别(如检测行人、车辆)。
核心原理:

  • 单阶段检测:将检测视为回归问题,直接通过卷积网络预测边界框坐标、置信度和类别概率,显著提升速度。
  • 网格划分:将输入图像划分为S×S网格,每个网格预测多个边界框,通过非极大值抑制(NMS)筛选最优结果。
    应用场景:
  • 自动驾驶中的实时障碍物检测;
  • 视频监控中的多目标跟踪;
  • 工业质检中的缺陷定位。

3.图像分割(U-Net)
任务定义:对图像进行像素级分类,输出分割掩膜(如区分医学图像中的肿瘤区域)。
核心原理:

  • U型对称结构:编码器(下采样)提取特征,解码器(上采样)恢复空间信息,跳跃连接融合浅层细节与深层语义。
  • 全卷积设计:无全连接层,支持任意尺寸输入,适用于高分辨率图像。
    应用场景:
  • 医学影像分割(如CT/MRI中的器官分割);
  • 卫星图像的土地覆盖分类;
  • 自动驾驶中的道路和行人分割。

三者对比

维度图像分类(ResNet)目标检测(YOLO)图像分割(U-Net)
输出形式单一类别标签多目标边界框+类别标签逐像素类别掩膜
计算复杂度中等(依赖网络深度)高(需处理多尺度目标)高(需处理高分辨率像素)
典型应用静态图像分类动态场景实时检测医学/遥感像素级分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值