一步一步理解大模型:多头注意力机制的作用

多头注意力机制通过不同的初始化权重和优化过程学习不同特征,每个头从不同的初始状态开始,通过梯度下降优化学习任务相关的不同方面信息。Dropout和超参数调整进一步增加特征多样性,结合解耦的网络设计,提升模型性能。
摘要由CSDN通过智能技术生成

多头注意力机制(Multi-Head Attention)是Transformer架构中的核心组件,它在自然语言处理、图像识别等领域取得了显著的成果。多头注意力机制通过将输入数据划分为多个“头”,使模型能够并行捕捉输入数据中的不同特征和模式。

这是一段MHA的代码:

# Define a multi-head attention class
class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, d_k, d_v, n_head, dropout=0.1):
        super(MultiHeadAttention, self).__init__()
        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v
        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)
        self.fc = nn.Linear(n_head * d_v, d_model)
        self.attention = ScaledDotProductAttention()
        self.dropout = nn.Dropout(dropout)

    def forward(self, q, k, v, attn_mask=None):
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, _ = q.size()
        sz_b, l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值