一步一步理解大模型:混合专家模型(MoE)简介

混合专家模型,英文叫Mixture of Experts (MoE) 是一种模型设计策略,它通过将多个模型(称为"专家")直接结合在一起,以获得更好的预测性能。在大模型中,MoE方案可以有效地提高模型的容量和效率。一般而言,大模型的MoE有一个门控机制和一套门控输出机制来合并和平衡专家的选择,用于决定每个专家对最终预测的;有一套专家选择机制,会根据门控机制的输出选择一部分专家进行预测。这样可以减少计算量,并使模型能够针对不同的输入选择最合适的专家。还有一套训练机制。

在Mixture of Experts (MoE)架构中,有如下几种常见模式(所有图片均来自提出者的论文):

ST (Switch Transformer): Switch Transformer中,模型的每一层都是一个专家网络的集合,输入数据会被动态地路由到不同的专家进行处理。

ST在Transformer模型中用一个稀疏的Switch前馈网络(FFN)层(浅蓝色)替换Transformer中存在的密集FFN层。该层独立地对序列中的标记进行操作,然后路由到多个FFN专家中。switch FFN层返回所选FFN的输出,然后乘以路由器阈值,然后进行合并。

EC (Expert Choice)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值