混合专家模型,英文叫Mixture of Experts (MoE) 是一种模型设计策略,它通过将多个模型(称为"专家")直接结合在一起,以获得更好的预测性能。在大模型中,MoE方案可以有效地提高模型的容量和效率。一般而言,大模型的MoE有一个门控机制和一套门控输出机制来合并和平衡专家的选择,用于决定每个专家对最终预测的;有一套专家选择机制,会根据门控机制的输出选择一部分专家进行预测。这样可以减少计算量,并使模型能够针对不同的输入选择最合适的专家。还有一套训练机制。
在Mixture of Experts (MoE)架构中,有如下几种常见模式(所有图片均来自提出者的论文):
ST (Switch Transformer): Switch Transformer中,模型的每一层都是一个专家网络的集合,输入数据会被动态地路由到不同的专家进行处理。
ST在Transformer模型中用一个稀疏的Switch前馈网络(FFN)层(浅蓝色)替换Transformer中存在的密集FFN层。该层独立地对序列中的标记进行操作,然后路由到多个FFN专家中。switch FFN层返回所选FFN的输出,然后乘以路由器阈值,然后进行合并。
EC (Expert Choice)