一步一步理解大模型:因果掩码

GPT的训练方法是使用因果掩码(causal mask),让模型在预测当前令牌时不能看到未来的令牌。

在Transformer模型中,自注意力(self-attention)是在整个令牌(token)序列上计算的,包括当前令牌之后的令牌。

在训练期间,我们不希望模型在预测当前令牌时看到未来的令牌而“作弊”。 为了防止这种情况,我们使用了因果掩码(causal mask),将所有未来的令牌设置为零,有效地从注意力机制中屏蔽了它们。

这使得模型在进行预测时只能关注过去和当前的令牌,并确保它仅基于每个时间步骤可用的信息进行预测。

具体实现中,这种掩码可以通过原始输入和一个合适的上三角矩阵相乘(或者逻辑与)来得到。

# Causal mask
causal_mask = torch.triu(torch.ones(input_shape[1], input_shape[1]), diagonal=1).bool().to(input.device)

例如,这句话:Cat is too fat. 会生成如下矩阵(假设窗口无限大):

Cat  <PAD> <PAD> <PAD>
Cat    is   <PAD> <PAD>
Cat    is    too   <PAD>

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
以下是一个掩码自编码模型的PyTorch代码,该模型使用了一个编码器和解码器网络,并使用一个掩码层来增加模型的稀疏性。 ``` import torch import torch.nn as nn import torch.nn.functional as F class MaskedAutoencoder(nn.Module): def __init__(self, input_size, hidden_size): super(MaskedAutoencoder, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.encoder = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU() ) self.decoder = nn.Sequential( nn.Linear(hidden_size, input_size), nn.Sigmoid() ) self.mask = nn.Parameter(torch.randn(hidden_size, input_size)) def forward(self, x): encoded = self.encoder(x) masked = encoded * self.mask decoded = self.decoder(masked) return decoded ``` 该模型的构造函数需要传入输入维度和隐藏层维度。编码器和解码器分别是由一些线性层和非线性激活函数组成的序列。掩码层是一个可训练参数,它的形状与编码器输出的形状相同。在正向传递期间,编码器接收输入并将其编码为隐藏表示形式。然后,该隐藏表示形式通过掩码层进行掩码,以增加模型的稀疏性。最后,解码器将掩码隐藏表示形式解码为原始输入。 在使用该模型时,可以使用标准的PyTorch优化器和损失函数来训练模型。以下是一个使用均方误差损失函数训练模型的示例代码。 ``` model = MaskedAutoencoder(input_size=784, hidden_size=256) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(10): for data in dataloader: inputs, _ = data optimizer.zero_grad() outputs = model(inputs.view(-1, 784)) loss = criterion(outputs, inputs.view(-1, 784)) loss.backward() optimizer.step() print(f"Epoch {epoch+1} loss: {loss.item():.4f}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值